Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Head and Body Lice Appear to be the Same Species, Genetic Study Finds

10.04.2012
A new study offers compelling genetic evidence that head and body lice are the same species. The finding is of special interest because body lice can transmit deadly bacterial diseases, while head lice do not. The study appears in the journal Insect Molecular Biology.

Scientists have long debated whether human head and body lice are the same or different species. The head louse (Pediculus humanus capitis) is a persistent nuisance, clinging to and laying its eggs in the hair, digging its mouthparts into the scalp and feeding on blood several times a day.

The body louse (Pediculus humanus humanus) tends to be larger than its cranial counterpart, and is a more dangerous parasite. It lays its eggs on clothing, takes bigger blood meals, and can transmit relapsing fever, trench fever and epidemic typhus to its human host.

Previous studies have found that even when they are both present on the same host, head and body lice don’t stray into each other’s territories. They don’t breed with one another in the wild, but they have been shown to successfully reproduce under specific laboratory conditions. The presence of head lice has little to do with human hygiene, but body lice seem to appear out of nowhere when hygiene suffers – in times of war or economic hardship, for example.

In the new study, researchers compared the number and sequences of all of the protein-coding genes expressed at every stage of the head and body louse life cycles.

“We were interested in understanding potentially how closely related head lice and body lice are,” said University of Illinois entomology professor Barry Pittendrigh, who led the study. “Do they have the same number of genes? Do those genes look very similar or are they very different? What we found is that these two organisms are extremely similar in terms of their protein-coding genes.”

The researchers also exposed the lice to a variety of environmental conditions to capture the greatest variety of gene activity.

“My colleagues at the University of Massachusetts, led by veterinary and animal sciences professor John Clark, collected lice at every developmental stage, exposed them to every pesticide they could get their hands on, multiple bacterial challenges, several physical challenges – cold, heat – to get the lice to express as many genes as possible,” Pittendrigh said. Very few differences were detected in the number or sequences of genes they expressed.
“The differences in their sequences were so minor that if we didn’t know they were separate groups, we would have considered them the same species,” he said.

“As body lice transmit diseases and head lice don’t, this system provides a unique opportunity to understand subtle changes that allow body lice to transmit human diseases,” said graduate student Brett Olds, who conducted the genetic analysis.

The study team also included Illinois animal biology professor Kenneth Paige; entomology graduate students Laura Steele and Tolulope Agunbiade; and S.H. Lee, from the department of agricultural biotechnology at Seoul National University. The National Institute of Allergy and Infectious Diseases at the National Institutes of Health supported this research.

Editor’s notes: To reach Barry Pittendrigh, email pittendr@illinois.edu
The paper, “Comparison of the transcriptional profiles of head and body
lice,” is available online

Diana Yates | University of Illinois
Further information:
http://www.illinois.edu

More articles from Studies and Analyses:

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Oxygen loss in the coastal Baltic Sea is “unprecedentedly severe”
05.07.2018 | European Geosciences Union

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>