Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Hands free mobile phone conversations add 5 metres to drivers' braking distances

03.12.2008
Research led by psychology researchers at the University of Warwick reveals that mobile telephone conversations impair drivers' visual attention to such a degree that it can add over 5 metres to the braking distance of a car travelling at 60 miles and causes almost twice as many errors as drivers driving without the distraction of a mobile phone conversation.

Dr Melina Kunar, from the University of Warwick’s Department of Psychology, and Dr Todd Horowitz, from Harvard Medical School, ran a number of experiments in which the participants had to pay attention and respond (by pressing one of two keys on a keyboard) to a series of discs moving around a computer screen.

Some of the participants carried out the task with no distraction. Others carried out the task while also using speaker phones to simultaneously engage in a normal phone conversation, discussing things such as their hobbies and interests. The researchers found that on average the reaction times of those engaging in the hands free telephone conversation were 212 milliseconds slower than those who undertook the task without the simultaneous telephone conversation. A car travelling at 60 miles an hour would travel 5.7 metres (18.7 feet) in that time so the distracting conversation would obviously increase any braking distance at that speed by the same amount. The test participants who were distracted by a phone conversation also made 83% more errors in the task than those not in phone conversations.

The researchers also looked at the effect the hands free telephone conversations had on visual attention if the phone conversation was skewed to a more passively orientated task. To do so they asked the test participants to listen over the speaker phones to a series of words and to repeat each word in turn. The research team also looked at the effect of a much more complicated conversational task in which the test participants had to listen to a series of words and after each word then think of and say a new word which began with the last letter of the word they had just heard.

For the more passive speaking condition, in which words were simply heard and repeated, they found that performance of test participants in this condition was the same as when they took the task without any distraction. However, they found the more complicated conversation in which the test participants were required to create and respond with a new word dramatically worsened the participants’ response times which were on average 480 milliseconds slower than those who undertook the task without any form of distracting telephone conversation. This suggests that hands free telephone conversations which require people to carefully consider the information they hear and then to make complex cognitive choices based on that information (a business decision for instance) have a particularly significant negative impact on a driver’s ability to process and act on the visual information that is critical to their driving performance.

Interestingly the researchers also examined what the effect would be of simply listening to a story while carrying out the task – an experience not unlike listening to speech radio while driving. To test this some of the participants in the experiment tried to complete the task while listening to the first chapter of Bram Stoker’s Dracula. They were also told they would have to answer questions on the story after the task was finished. The researchers found that in fact this activity made very little difference to the test participants response times or accuracy

The lead researcher in the project, Dr Melina Kunar from the University of Warwick’s Department of Psychology, said: “Our research shows that simply using phones hands free is not enough to eliminate significant impacts on a driver’s visual attention. Generating responses for a conversation competes for the brain’s resources with other activities which simply cannot run in parallel. This leads to a cognitive “bottleneck” developing in the brain, particularly with the more complicated task of word generation.”

Peter Dunn | alfa
Further information:
http://www.warwick.ac.uk

More articles from Studies and Analyses:

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Oxygen loss in the coastal Baltic Sea is “unprecedentedly severe”
05.07.2018 | European Geosciences Union

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

A smart safe rechargeable zinc ion battery based on sol-gel transition electrolytes

20.07.2018 | Power and Electrical Engineering

Reversing cause and effect is no trouble for quantum computers

20.07.2018 | Information Technology

Princeton-UPenn research team finds physics treasure hidden in a wallpaper pattern

20.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>