Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gut microbiome shapes change in human health and disease research

11.10.2011
World class scientist Professor Willem M. de Vos will explain next Monday how the microbes that are closest to our hearts – gut microbes – could underpin a new way of thinking about human biology. As well as looking at our own genes, we can now include those of our microbes in studies of human health and disease. This is a significant shift in the way we approach human biology.

Gut microbes affect our health by producing vitamins, priming our immune system and contributing to resistance to pathogens. For example, recent studies have shown that the insulin resistance of patients with type 2 diabetes is linked to the intestinal microbiota composition and can be beneficially altered by replacing it with the microbiota of healthy donors.

The genes of our gut microbes, also known as the microbiome, act as a personalized organ that can be modified by diet, lifestyle and antibiotics. This organ is fed partly by us and partly by our diets. Professor de Vos and colleagues have classified the human microbiome into three enterotypes: clusters of microbiomes with similar compositions and nutrient-processing preferences. These enterotypes are characterized by bacteria with different capacities to degrade carbohydrate and mucin (a gel-forming protein which produces mucus). Our gut microbes get carbohydrates partly from our diet, whereas the mucin is produced by our own body.

Although these enterotypes are separated by species composition, it doesn't necessarily follow that abundant functions are provided by abundant species. To investigate the relationship between the microbiome and health, scientists must establish the functions of the products of their microbiomes.

"We have evolved with the microbes in our gut, our microbes inside, and have discovered that they talk to us and we feed them with, among other things, the mucins we produce. We now are trying to unravel their functions and understand exactly what these microbes and their products mean to human health" said Professor de Vos.

The size of one microbial metagenome (one host's microbiome) is 150 times larger than the human genome and encodes 100 times more genes than our own genome. This extensive gene catalogue could enable us to study potential associations between microbial genes and human phenotypes and even environmental factors like diet, throughout the length of our lifetime.

On 10 October 2011, Professor Willem M. de Vos will present the fourth Environmental Microbiology Lecture: "Microbes Inside"

Dr. Lucy Harper | EurekAlert!
Further information:
http://www.wiley.com

More articles from Studies and Analyses:

nachricht TU Dresden biologists examine sperm quality on the basis of their metabolism
29.11.2019 | Technische Universität Dresden

nachricht Approaching the perception of touch in the brain
27.11.2019 | Max Planck Institute for Human Cognitive and Brain Sciences

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing a digital twin

University of Texas and MIT researchers create virtual UAVs that can predict vehicle health, enable autonomous decision-making

In the not too distant future, we can expect to see our skies filled with unmanned aerial vehicles (UAVs) delivering packages, maybe even people, from location...

Im Focus: The coldest reaction

With ultracold chemistry, researchers get a first look at exactly what happens during a chemical reaction

The coldest chemical reaction in the known universe took place in what appears to be a chaotic mess of lasers. The appearance deceives: Deep within that...

Im Focus: How do scars form? Fascia function as a repository of mobile scar tissue

Abnormal scarring is a serious threat resulting in non-healing chronic wounds or fibrosis. Scars form when fibroblasts, a type of cell of connective tissue, reach wounded skin and deposit plugs of extracellular matrix. Until today, the question about the exact anatomical origin of these fibroblasts has not been answered. In order to find potential ways of influencing the scarring process, the team of Dr. Yuval Rinkevich, Group Leader for Regenerative Biology at the Institute of Lung Biology and Disease at Helmholtz Zentrum München, aimed to finally find an answer. As it was already known that all scars derive from a fibroblast lineage expressing the Engrailed-1 gene - a lineage not only present in skin, but also in fascia - the researchers intentionally tried to understand whether or not fascia might be the origin of fibroblasts.

Fibroblasts kit - ready to heal wounds

Im Focus: McMaster researcher warns plastic pollution in Great Lakes growing concern to ecosystem

Research from a leading international expert on the health of the Great Lakes suggests that the growing intensity and scale of pollution from plastics poses serious risks to human health and will continue to have profound consequences on the ecosystem.

In an article published this month in the Journal of Waste Resources and Recycling, Gail Krantzberg, a professor in the Booth School of Engineering Practice...

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The Future of Work

03.12.2019 | Event News

First International Conference on Agrophotovoltaics in August 2020

15.11.2019 | Event News

Laser Symposium on Electromobility in Aachen: trends for the mobility revolution

15.11.2019 | Event News

 
Latest News

Solving the mystery of carbon on ocean floor

06.12.2019 | Earth Sciences

Chip-based optical sensor detects cancer biomarker in urine

06.12.2019 | Life Sciences

A platform for stable quantum computing, a playground for exotic physics

06.12.2019 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>