Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Graphene gives a tremendous boost to future terahertz cameras

16.04.2019

A study in Nano Letters reports on the development of a graphene-enabled detector for terahertz light that is faster and more sensitive than existing room-temperature technologies

Detecting terahertz (THz) light is extremely useful for two main reasons:


(Left) Schematic representation of the central part of the graphene-based THz photodetector device, containing the hBN-encapsulated graphene channel, on top of the narrow-gap antenna structure. By applying distinct voltages to the left and right antenna branches, a pn-junction is created in the graphene channel with unequal Seebeck coefficients on the left and right of the junction. Incident light is focused by the antenna above the gap, which is where the photoresponse is generated. (Right) Measurement of a THz focus, obtained by scanning the THz detector in the plane of the focus. The observation of several rings of the Airy pattern indicate the high sensitivity of the detector.

Credit: ICFO

Firstly, THz technology is becoming a key element in applications regarding security (such as airport scanners), wireless data communication, and quality control, to mention just a few. However, current THz detectors have shown strong limitations in terms of simultaneously meeting the requirements for sensitivity, speed, spectral range, being able to operate at room temperature, etc.

Secondly, it is a very safe type of radiation due to its low-energy photons, with more than a hundred times less energy than that of photons in the visible light range.

Many graphene-based applications are expected to emerge from its use as material for detecting light. Graphene has the particularity of not having a bandgap, as compared to standard materials used for photodetection, such as silicon. The bandgap in silicon causes incident light with wavelengths longer than one micron to not be absorbed and thus not detected.

In contrast, for graphene, even terahertz light with a wavelength of hundreds of microns can be absorbed and detected. Whereas THz detectors based on graphene have shown promising results so far, none of the detectors so far could beat commercially available detectors in terms of speed and sensitivity.

In a recent study, ICFO researchers Sebastian Castilla and Dr. Bernat Terres, led by ICREA Prof. at ICFO Frank Koppens and former ICFO scientist Dr. Klaas-Jan Tielrooij (now Junior Group Leader at ICN2), in collaboration with scientists from CIC NanoGUNE, NEST (CNR), Nanjing University, Donostia International Physics Center, University of Ioannina and the National Institute for Material Sciences, have been able to overcome these challenges. They have developed a novel graphene-enabled photodetector that operates at room temperature, and is highly sensitive, very fast, has a wide dynamic range and covers a broad range of THz frequencies.

In their experiment, the scientists were able to optimize the photoresponse mechanism of a THz photodetector using the following approach. They integrated a dipole antenna into the detector to concentrate the incident THz light around the antenna gap region.

By fabricating a very small (100 nm, about one thousand times smaller than the thickness of a hair) antenna gap, they were able to obtain a great intensity concentration of THz incident light in the photoactive region of the graphene channel.

They observed that the light absorbed by the graphene creates hot carriers at a pn-junction in graphene; subsequently, the unequal Seebeck coefficients in the p- and n-regions produce a local voltage and a current through the device generating a very large photoresponse and, thus, leading to a very high sensitivity, high speed response detector, with a wide dynamic range and a broad spectral coverage.

The results of this study open a pathway towards the development a fully digital low-cost camera system. This could be as cheap as the camera inside the smartphone, since such a detector has proven to have a very low power consumption and is fully compatible with CMOS technology.

###

REFERENCE

Fast and sensitive terahertz detection using an antenna-integrated graphene pn-junction

Nano Letters

Sebastián Castilla, Bernat Terrés, Marta Autore, Leonardo Viti, Jian Li, Alexey Y. Nikitin, Ioannis Vangelidis, Kenji Watanabe, Takashi Taniguchi, Elefterios Lidorikis, Miriam S. Vitiello, Rainer Hillenbrand, Klaas-Jan Tielrooij, and Frank H.L. Koppens

DOI: 10.1021/acs.nanolett.8b04171

FUNDING INFO

This work was funded by the Cellex foundation, the Graphene Flagship, as well as a Mineco Young Investigator grant.

CONTACT

Klaas-Jan Tielrooij, klaas.tielrooij@icn2.cat , +34691361210

Frank Koppens, koppens@icfo.eu

ABOUT ICFO:

ICFO - The Institute of Photonic Sciences was founded in 2002 by the Government of Catalonia and the Universitat Politècnica de Catalunya (UPC),both of which are members of its board of trustees along with the Cellex and Mir-Puig Foundations, philanthropic entities that have played a critical role in the advancement of the institute since 2007.

Located in the Mediterranean Technology Park in the metropolitan area of Barcelona, the institute currently hosts 400 people, organized in 26 research groups in 60 state-of-the-art research laboratories. Research lines encompass diverse areas in which photonics plays a decisive role, with an emphasis on basic and applied themes relevant to medicine and biology, advanced imaging techniques, information technologies, a range of environmental sensors, tunable and ultra-fast lasers, quantum science, photovoltaics and the properties and applications of nano-materials such as graphene, among others.

In addition to two state awarded Severo Ochoa accreditations of excellence, ICFOnians have been awarded 15 ICREA Professorships and 34 European Research Council grants. ICFO participates actively in the European Technological Platform Photonics21 and is also very proactive in fostering entrepreneurial activities, spin-off creation, and creating collaborations and links between industry and ICFO researchers. To date, ICFO has helped create 7 start-up companies.

Visit http://www.icfo.eu or follow @ICFOnians

Media Contact

Brook Hardwick
brook.hardwick@icfo.eu
34-935-542-214

http://www.icfo.es 

Brook Hardwick | EurekAlert!
Further information:
http://dx.doi.org/10.1021/acs.nanolett.8b04171

More articles from Studies and Analyses:

nachricht New study shows nanoscale pendulum coupling
05.07.2019 | University of Barcelona

nachricht New unprinting method can help recycle paper and curb environmental costs
26.06.2019 | Rutgers University

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

Im Focus: Modelling leads to the optimum size for platinum fuel cell catalysts: Activity of fuel cell catalysts doubled

An interdisciplinary research team at the Technical University of Munich (TUM) has built platinum nanoparticles for catalysis in fuel cells: The new size-optimized catalysts are twice as good as the best process commercially available today.

Fuel cells may well replace batteries as the power source for electric cars. They consume hydrogen, a gas which could be produced for example using surplus...

Im Focus: The secret of mushroom colors

Mushrooms: Darker fruiting bodies in cold climates

The fly agaric with its red hat is perhaps the most evocative of the diverse and variously colored mushroom species. Hitherto, the purpose of these colors was...

Im Focus: First results of the new Alphatrap experiment

Physicists at the Max Planck Institute for Nuclear Physics in Heidelberg report the first result of the new Alphatrap experiment. They measured the bound-electron g-factor of highly charged (boron-like) argon ions with unprecedented precision of 9 digits. In comparison with a new highly accurate quantum electrodynamic calculation they found an excellent agreement on a level of 7 digits. This paves the way for sensitive tests of QED in strong fields like precision measurements of the fine structure constant α as well as the detection of possible signatures of new physics. [Physical Review Letters, 27 June 2019]

Quantum electrodynamics (QED) describes the interaction of charged particles with electromagnetic fields and is the most precisely tested physical theory. It...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

A human liver cell atlas

15.07.2019 | Life Sciences

No more trial-and-error when choosing an electrolyte for metal-air batteries

15.07.2019 | Power and Electrical Engineering

Possibilities of the biosimilar principle of learning are shown for a memristor-based neural network

15.07.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>