Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Global rainfall satellites require massive overhaul

13.02.2015

Circling hundreds of miles above Earth, weather satellites are working round-the-clock to provide rainfall data that are key to a complex system of global flood prediction.

A new Cornell University study warns that the existing system of space-based rainfall observation satellites requires a serious overhaul. Particularly in many developing countries, satellite-based flood prediction has weak spots, which could lead to major flooding that catches people by surprise. What's more, four of the 10 dedicated rainfall satellites are past their warranty, further increasing risk of disaster.

The study, published online Feb. 11 in Environmental Research Letters, is led by Patrick Reed, professor of civil and environmental engineering, in collaboration with researchers at Princeton University and the Aerospace Corporation.

"It's important for us to start thinking as a globe about a serious discussion on flood adaptation, and aiding affected populations to reduce their risks," Reed said. "We want to give people time to evacuate, to make better choices, and to understand their conditions."

In their study, Reed and colleagues showed that even assuming all 10 satellites are working well and perfectly coordinated, rainfall data still has many deficits across the globe, including in areas vulnerable to flood risk. Removing the four satellites that have surpassed their design life dramatically increases these deficits, possibly leading to high-intensity flood events to go unobserved.

The study was not all bad news. Reed and colleagues also demonstrated that replacing as few as two of the four satellites past their design life could help close these gaps considerably.

In the paper, the researchers call for increased international coordination of satellite replacement. The system now is not very well coordinated; satellite administration varies among the National Oceanic and Atmospheric Administration, the Department of Defense, the Japan Aerospace Exploration Agency, the European Space Agency, and others, and all have their own specific mission requirements, Reed said.

Broader collaboration is needed to fix the data deficits that are only expected to get worse. Concerns about a dramatic loss of satellite capabilities critical to many areas of Earth sciences have been widely reported since the National Research Council sounded the alarm in 2007, and again in 2012. Reed's paper is an attempt to quantify the specific consequences of this alarm with respect to rainfall and global flooding.

###

Cornell University has television, ISDN and dedicated Skype/Google+ Hangout studios available for media interviews.

Media Contact

Melissa Osgood
mmo59@cornell.edu
607-255-2059

 @cornell

http://pressoffice.cornell.edu 

Melissa Osgood | EurekAlert!

More articles from Studies and Analyses:

nachricht New study shows nanoscale pendulum coupling
05.07.2019 | University of Barcelona

nachricht New unprinting method can help recycle paper and curb environmental costs
26.06.2019 | Rutgers University

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

Im Focus: Modelling leads to the optimum size for platinum fuel cell catalysts: Activity of fuel cell catalysts doubled

An interdisciplinary research team at the Technical University of Munich (TUM) has built platinum nanoparticles for catalysis in fuel cells: The new size-optimized catalysts are twice as good as the best process commercially available today.

Fuel cells may well replace batteries as the power source for electric cars. They consume hydrogen, a gas which could be produced for example using surplus...

Im Focus: The secret of mushroom colors

Mushrooms: Darker fruiting bodies in cold climates

The fly agaric with its red hat is perhaps the most evocative of the diverse and variously colored mushroom species. Hitherto, the purpose of these colors was...

Im Focus: First results of the new Alphatrap experiment

Physicists at the Max Planck Institute for Nuclear Physics in Heidelberg report the first result of the new Alphatrap experiment. They measured the bound-electron g-factor of highly charged (boron-like) argon ions with unprecedented precision of 9 digits. In comparison with a new highly accurate quantum electrodynamic calculation they found an excellent agreement on a level of 7 digits. This paves the way for sensitive tests of QED in strong fields like precision measurements of the fine structure constant α as well as the detection of possible signatures of new physics. [Physical Review Letters, 27 June 2019]

Quantum electrodynamics (QED) describes the interaction of charged particles with electromagnetic fields and is the most precisely tested physical theory. It...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

A human liver cell atlas

15.07.2019 | Life Sciences

No more trial-and-error when choosing an electrolyte for metal-air batteries

15.07.2019 | Power and Electrical Engineering

Possibilities of the biosimilar principle of learning are shown for a memristor-based neural network

15.07.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>