Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetics study reveals how bacteria behind serious childhood disease evolve to evade vaccines

30.01.2012
Genetics has provided surprising insights into why vaccines used in both the UK and US to combat serious childhood infections can eventually fail. The study, published today in Nature Genetics, which investigates how bacteria change their disguise to evade the vaccines, has implications for how future vaccines can be made more effective.

Pneumococcus (Streptococcus pneumoniae) causes potentially life-threatening diseases including pneumonia and meningitis. Pneumococcal infections are thought to kill around a million young children worldwide each year, though the success of vaccination programmes has led to a dramatic fall in the number of cases in countries such as the UK and US.

These vaccines recognise the bacteria by its polysaccharide, the material found on the outside of the bacterial cell. There are over ninety different kinds – or 'serotypes' – of the bacteria, each with a different polysaccharide coating.

In 2000, the US introduced a pneumococcal vaccine which targeted seven of the ninety serotypes. This '7-valent' vaccine was extremely effective and had a dramatic effect on reducing disease amongst the age groups targeted. Remarkably, the vaccine has also prevented transmission from young children to adults, resulting in tens of thousands fewer cases of pneumococcal disease each year. The same vaccine was introduced in the UK in 2006 and was similarly successful.

In spite of the success of the vaccine programmes, some pneumococcal strains managed to continue to cause disease by camouflaging themselves from the vaccine. In research funded by the Wellcome Trust, scientists at the University of Oxford and at the Centers for Disease Control and Prevention in Atlanta studied what happened after the introduction of this vaccine in the US. They used the latest genomic techniques combined with epidemiology to understand how different serotypes of the pneumococcus bacteria evolve to replace those targeted by the initial vaccine.

The researchers found bacteria that had evaded the vaccine by swapping the region of the genome responsible for making the polysaccharide coating with the same region from a different serotype, not targeted by the vaccine. This effectively disguised the bacteria, making it invisible to the vaccine. This exchange of genome regions occurred during a process known as recombination, whereby one of the bacteria replaces a piece of its own DNA with a piece from another bacterial type.

Dr Rory Bowden, from the University of Oxford, explains: "Imagine that each strain of the pneumococcus bacteria is a class of schoolchildren, all wearing the school uniform. If a boy steals from his corner shop, a policeman – in this case the vaccine – can easily identify which school he belongs to by looking at his uniform. But if the boy swaps his sweater with a friend from another school, the policemen will no longer be able to recognise him and he can escape. This is how the pneumococcus bacteria evade detection by the vaccine."

Dr Bowden and colleagues identified a number of recombined serotypes that had managed to evade the vaccine. One in particular grew in frequency and spread across the US from east to west over several years. They also showed that during recombination, the bacteria also traded a number of other parts of the genome at the same time, a phenomenon never before observed in natural populations of pneumococcus. This is of particular concern as recombination involving multiple fragments of DNA allows rapid simultaneous exchange of key regions of the genome within the bug, potentially allowing it to quickly develop antibiotic resistance.

The original 7-valent vaccine in the US has now been replaced by a 13-valent vaccine, which targets thirteen different serotypes, including the particular type which had escaped the original vaccine. In the UK, the 7-valent vaccine resulted in a substantial drop in disease overall. This overall effect was a mixture of a large drop in frequency of the serotypes targeted by the vaccine with some growth in serotypes not targeted by the vaccine. The 13-valent vaccine was introduced in the UK in 2010.

Derrick Crook, Professor of Microbiology at the University of Oxford and Infection Control Doctor at the Oxford University Hospitals NHS Trust, adds: "Childhood vaccines are very effective at reducing disease and death at a stage in our lives when we are susceptible to serious infections. Understanding what makes a vaccine successful and what can cause it to fail is important. We should now be able to understand better what happens when a pneumococcal vaccine is introduced into a new population. Our work suggests that current strategies for developing new vaccines are largely effective but may not have long term effects that are as successful as hoped."

Dr Bernard Beall, a scientist at the Centers for Disease Control and Prevention commented: "The current vaccine strategy of targeting predominant pneumococcal serotypes is extremely effective, however our observations indicate that the organism will continue to adapt to this strategy with some measurable success."

The Wellcome Trust, which part-funded this research, views combating infectious disease and maximising the health benefits of genetic research as two of its strategic priorities. Dr Michael Dunn, Head of Molecular and Physiological Sciences at the Wellcome Trust commented: "New technologies allow us to rapidly sequence disease-causing organisms and see how they evolve. Coupled with collaborations with epidemiologists, we can then track how they spread and monitor the potential impact this will have on vaccine efficiency. This will provide useful lessons for vaccine implementation strategies."

Craig Brierley | EurekAlert!
Further information:
http://www.wellcome.ac.uk

More articles from Studies and Analyses:

nachricht Age research: A low level of the stress hormone cortisol contributes to the ageing process
01.07.2020 | Universität des Saarlandes

nachricht Researchers are watching the brain memorizing rooms
26.06.2020 | Max-Planck-Institut für Kognitions- und Neurowissenschaften

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: ILA Goes Digital – Automation & Production Technology for Adaptable Aircraft Production

Live event – July 1, 2020 - 11:00 to 11:45 (CET)
"Automation in Aerospace Industry @ Fraunhofer IFAM"

The Fraunhofer Institute for Manufacturing Technology and Advanced Materials IFAM l Stade is presenting its forward-looking R&D portfolio for the first time at...

Im Focus: AI monitoring of laser welding processes - X-ray vision and eavesdropping ensure quality

With an X-ray experiment at the European Synchrotron ESRF in Grenoble (France), Empa researchers were able to demonstrate how well their real-time acoustic monitoring of laser weld seams works. With almost 90 percent reliability, they detected the formation of unwanted pores that impair the quality of weld seams. Thanks to a special evaluation method based on artificial intelligence (AI), the detection process is completed in just 70 milliseconds.

Laser welding is a process suitable for joining metals and thermoplastics. It has become particularly well established in highly automated production, for...

Im Focus: A structural light switch for magnetism

A research team from the Max Planck Institute for the Structure of Dynamics (MPSD) and the University of Oxford has managed to drive a prototypical antiferromagnet into a new magnetic state using terahertz frequency light. Their groundbreaking method produced an effect orders of magnitude larger than previously achieved, and on ultrafast time scales. The team’s work has just been published in Nature Physics.

Magnetic materials have been a mainstay in computing technology due to their ability to permanently store information in their magnetic state. Current...

Im Focus: Virtually Captured

Biomechanical analyses and computer simulations reveal the Venus flytrap snapping mechanisms

The Venus flytrap (Dionaea muscipula) takes only 100 milliseconds to trap its prey. Once their leaves, which have been transformed into snap traps, have...

Im Focus: NASA observes large Saharan dust plume over Atlantic ocean

NASA-NOAA's Suomi NPP satellite observed a huge Saharan dust plume streaming over the North Atlantic Ocean, beginning on June 13. Satellite data showed the dust had spread over 2,000 miles.

At NASA's Goddard Space Flight Center in Greenbelt, Maryland, Colin Seftor, an atmospheric scientist, created an animation of the dust and aerosols from the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

First exposed planetary core discovered

01.07.2020 | Physics and Astronomy

Energy-saving servers: Data storage 2.0

01.07.2020 | Power and Electrical Engineering

Laser takes pictures of electrons in crystals

01.07.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>