Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetics and Sociality

29.11.2011
Researchers show in the journal “PNAS” how friends can relieve stress

Social support from family and friends is one of the most powerful protective factors against stress-related diseases - from heart attacks to depression. Prof. Markus Heinrichs, Professor of Biological Psychology at the University of Freiburg, demonstrated in 2003 for the first time in humans that the neurohormone oxytocin plays a central role in both the control of stress and the stress-reducing effect of social support. He has also shown in a series of studies that oxytocin administered as a nasal spray increases trust and empathy for others and therefore has therapeutic potential for a range of mental disorders.

But could the oxytocin system also help explain why support from close friends and family has very different effects on individuals?

In the current issue of the prestigious scientific journal Proceedings of the National Academy of Sciences (PNAS), the Freiburg psychologists and neuroscientists Prof. Markus Heinrichs, Dr. Frances S. Chen, Dr. Robert Kumsta, and Dr. Bernadette von Dawans, together with the researchers Prof. Richard P. Ebstein and Dr. Mikhail Monakhov of the National University of Singapore, examined for the first time genetic modulation of social support’s effectiveness during stress through variants of the oxytocin receptor gene (OXTR). The hormonal and subjective stress responses of 200 adults to a standardized social stress test were studied; half of the sample was asked to bring a close friend for support. “The presence of a friend during preparation for the test reduced stress in most people; interestingly, however, the group of people carrying a particular variant of the oxytocin receptor gene did not benefit from the support" said Frances S. Chen. For Markus Heinrichs, these results have far-reaching consequences for current research on new therapeutic approaches: "The ‘psychobiological therapy' we are currently developing involves a completely new combination of oxytocin and psychotherapy for mental disorders involving social deficits – here, it is of great relevance to understand how ‘sensitive’ this system is in different patients.”

Original Publication:
Chen, F.S.*, Kumsta, R.*, von Dawans, B., Monakhov, M., Ebstein, R.P. & Heinrichs, M. (2011). Common oxytocin receptor gene (OXTR) polymorphism and social support interact to reduce stress in humans. Proceedings of the National Academy of Sciences of the United States of America (PNAS), in press. (* shared first authorship)

www.psychologie.uni-freiburg.de/abteilungen/psychobio

Contact:
Prof. Dr. Markus Heinrichs
Department of Psychology
University of Freiburg
Phone: 0049-761-203-3029
Fax: 0049-761-203-3023
E-mail: heinrichs@psychologie.uni-freiburg.de

Prof. Dr. Markus Heinrichs | University of Freiburg
Further information:
http://www.uni-freiburg.de

More articles from Studies and Analyses:

nachricht New study shows nanoscale pendulum coupling
05.07.2019 | University of Barcelona

nachricht New unprinting method can help recycle paper and curb environmental costs
26.06.2019 | Rutgers University

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Better thermal conductivity by adjusting the arrangement of atoms

Adjusting the thermal conductivity of materials is one of the challenges nanoscience is currently facing. Together with colleagues from the Netherlands and Spain, researchers from the University of Basel have shown that the atomic vibrations that determine heat generation in nanowires can be controlled through the arrangement of atoms alone. The scientists will publish the results shortly in the journal Nano Letters.

In the electronics and computer industry, components are becoming ever smaller and more powerful. However, there are problems with the heat generation. It is...

Im Focus: First-ever visualizations of electrical gating effects on electronic structure

Scientists have visualised the electronic structure in a microelectronic device for the first time, opening up opportunities for finely-tuned high performance electronic devices.

Physicists from the University of Warwick and the University of Washington have developed a technique to measure the energy and momentum of electrons in...

Im Focus: Megakaryocytes act as „bouncers“ restraining cell migration in the bone marrow

Scientists at the University Würzburg and University Hospital of Würzburg found that megakaryocytes act as “bouncers” and thus modulate bone marrow niche properties and cell migration dynamics. The study was published in July in the Journal “Haematologica”.

Hematopoiesis is the process of forming blood cells, which occurs predominantly in the bone marrow. The bone marrow produces all types of blood cells: red...

Im Focus: Artificial neural network resolves puzzles from condensed matter physics: Which is the perfect quantum theory?

For some phenomena in quantum many-body physics several competing theories exist. But which of them describes a quantum phenomenon best? A team of researchers from the Technical University of Munich (TUM) and Harvard University in the United States has now successfully deployed artificial neural networks for image analysis of quantum systems.

Is that a dog or a cat? Such a classification is a prime example of machine learning: artificial neural networks can be trained to analyze images by looking...

Im Focus: Extremely hard yet metallically conductive: Bayreuth researchers develop novel material with high-tech prospects

An international research group led by scientists from the University of Bayreuth has produced a previously unknown material: Rhenium nitride pernitride. Thanks to combining properties that were previously considered incompatible, it looks set to become highly attractive for technological applications. Indeed, it is a super-hard metallic conductor that can withstand extremely high pressures like a diamond. A process now developed in Bayreuth opens up the possibility of producing rhenium nitride pernitride and other technologically interesting materials in sufficiently large quantity for their properties characterisation. The new findings are presented in "Nature Communications".

The possibility of finding a compound that was metallically conductive, super-hard, and ultra-incompressible was long considered unlikely in science. It was...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

Heat flow through single molecules detected

19.07.2019 | Physics and Astronomy

Heat transport through single molecules

19.07.2019 | Physics and Astronomy

Welcome Committee for Comets

19.07.2019 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>