Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genes and Nutrition Influence Caste in Unusual Species of Harvester Ant

19.08.2008
Is nature or nurture more important in determining an ant’s status in the colony?

That is the question researchers posed in a new study of the Florida harvester ant, Pogonomyrmex badius, a resilient creature found in many parts of the southeastern United States. The answer? Both nature (i.e. the ant’s genetic makeup) and nurture (what it eats, for example) play a role in determining its fate.

The research team included scientists from the University of Illinois, the University of Arizona, Linfield College and Arizona State University. The findings were published online on August 14 by American Naturalist.

In the hierarchy of an ant colony, status is everything. If you are a “gyne” and thus destined to become a queen, you can expect the very best accommodations and generous portions at mealtimes. If you are a worker, you must be ready to sacrifice your health, welfare and reproductive capacity for the betterment of the colony.

The researchers were drawn to P. badius because its social structure is more complex than most. Its caste system includes two categories of workers: majors and minors. Major workers are nearly four times heavier than minors, but the minors outnumber them by 20:1. Gynes (pronounced “JINES”) are about eight times heavier than minors.

The researchers wanted to know whether the ant’s genetic endowment dictated its caste and size or whether nutrition also played a role.

“Basically what we found is that things are more complicated than previously thought,” said Christopher R. Smith, a former graduate student in the School of Integrative Biology at Illinois and corresponding author on the study. “Our study shows that there is a large genetic component to caste determination, but that there is also a very strong environmental component.”

The researchers found that the genetic makeup of the colonies they studied was quite diverse. The average P. badius queen had mated with at least 20 males (the norm for ants is one to five). The genetic analysis also suggested that the offspring of most males could develop into any caste, but that some male lineages (patrilines) were more likely to become gynes while others were more likely to become major or minor workers.

A recent study of honey bees found that colonies with a lot of genetic diversity were better at nest building and finding and storing food than their less diverse counterparts.

While historically, it has been assumed that castes are environmentally determined, recent studies on Pogonomyrmex harvester ants have found colonies in which becoming a worker or gyne is determined exclusively by genetic differences. This constrains the colony’s ability to adaptively adjust to environmental realities. For example, colonies that have few workers and yet produce many larvae that are destined to become gynes fail to grow to maturity because they lack the resources to feed the voracious gynes. On the other hand, colonies that can respond to environmental factors and alter the ratio of the castes they produce are often more successful in a changing environment. They can produce more workers when resources are scarce and more gynes when food is plentiful.

“Flexibility in caste determination is essential as it allows the colony to respond to changes in need or environmental fluctuations,” said principal investigator Andrew Suarez, an Illinois professor of animal biology and of entomology and an affiliate of the Institute for Genomic Biology.

In the new study, the researchers analyzed what the P. badius ants were eating. Using stable isotope analysis, which looks for different versions of elements such as nitrogen and carbon in the diet, the researchers could tell whether individual ants were eating higher or lower on the food chain. Those at the top would have a more carnivorous diet, with a higher nitrogen content in their foods. They would also ingest more of a specific isotope of nitrogen in their foods than those eating seeds or plants.

The analysis showed that gynes were at the top of the dietary food chain and had the highest proportion of nitrogen in their diets. The minor workers had the lowest nitrogen content and were eating primarily from plant rather than animal sources. The majors were getting a better diet than the minors, but were not eating as well as the gynes.

“Differences in the nutrition that an individual assimilated during larval growth are strong predictors of caste,” the authors wrote.

The researchers also found that genetic differences predict size in major workers and gynes, but not minor workers. Minor workers increase in size only as the colony grows, probably because larger colonies have more resources available to them.

The exact mechanisms by which genetics or diet influence caste are not yet known, Smith said, but in P. badius both play an important role. There may be a hormonal response, for example, that is driven in part by genetics and in part by nutrition that determines the trajectory of an individual ant’s development, he said. Smith, currently a post-doctoral fellow at Arizona State University's School of Life Sciences, continues to investigate how genetic differences interact with variation in diet to generate so much diversity in the form and function of all ants.

The fact that nutrition can alter the genetic destiny of some individuals in the colony probably allows the colony to adjust the ratio of workers to gynes to survive in tough times, he said.

“But there are still ‘haves’ and ‘have nots’ in the colony: those genetic variants who have a reproductive advantage and those that don’t,” Smith said. “The ant colony and human society have striking parallels.”

Smith quotes Marx and Engels, who theorized in their manifesto: “The history of all past society has consisted in the development of class antagonisms… the exploitation of one part of society by the other.”

Diana Yates | Newswise Science News
Further information:
http://www.illinois.edu
http://www.asu.edu

More articles from Studies and Analyses:

nachricht Researchers simplify tiny structures' construction drip by drip
12.11.2018 | Princeton University, Engineering School

nachricht Mandibular movement monitoring may help improve oral sleep apnea devices
06.11.2018 | Elsevier

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Optical Coherence Tomography: German-Japanese Research Alliance hosted Medical Imaging Conference

19.11.2018 | Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

 
Latest News

When AI and optoelectronics meet: Researchers take control of light properties

20.11.2018 | Physics and Astronomy

Researchers use MRI to predict Alzheimer's disease

20.11.2018 | Medical Engineering

How to melt gold at room temperature

20.11.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>