Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genes linked to low birth weight, adult shortness and later diabetes risk

03.12.2012
Researchers at The Children's Hospital of Philadelphia part of a large international study

An international team of genetics researchers has discovered four new gene regions that contribute to low birth weight. Three of those regions influence adult metabolism, and appear to affect longer-term outcomes such as adult height, risk of type 2 diabetes and adult blood pressure.

"This large study adds to the evidence that genes have a strong influence on fetal growth," said one of the co-authors, Struan F.A. Grant, Ph.D., associate director of the Center for Applied Genomics at The Children's Hospital of Philadelphia. "The cumulative effect of the genes is surprisingly strong; it's equivalent to the effect of maternal smoking, which is already recognized as lowering a baby's weight at birth. We already know that a low birth weight increases the risk of health problems in adult life."

The article, published today in Nature Genetics, was the second major study on birth weight by the Early Growth Genetics (EGG) Consortium, composed of groups of scientists from multiple countries, including the United Kingdom, Finland, the Netherlands, and the United States. Earlier this year, Grant was the lead investigator of an EGG study—the largest-ever genome-wide study of common childhood obesity—which found two novel gene variants that increase the risk of that condition.

The lead investigator of the current study was Rachel M. Freathy, Ph.D., a Sir Henry Wellcome Postdoctoral Fellow from the University of Exeter Medical School in the U.K.

The meta-analysis and follow-up study encompassed nearly 70,000 individuals, of European, Arab, Asian and African American descent, from across 50 separate studies of pregnancy and birth. In addition to confirming that three previously discovered genetic regions increased the risk of low birth weight, the consortium discovered four new regions: genes HMGA2, LCORL, ADRB1, and a locus on chromosome 5.

Two of the previously identified gene regions are connected to a risk of type 2 diabetes, while two of the newly found regions confer a risk of shorter adult stature. A third region, ADRB1, is associated with adult blood pressure—the first time that scientists have found a genetic link common to both birth weight and blood pressure. The biological mechanisms by which the identified genetic regions function to influence early growth and adult metabolism remain to be discovered, although, said Grant, these regions offer intriguing areas on which to focus follow-up research.

Freathy, the study's lead investigator, summed up the study's findings by saying, "These discoveries give us important clues to the mechanisms responsible for the control of a baby's growth in the womb, and may eventually lead to a better understanding of how to manage growth problems during pregnancy."

"This study demonstrates that genes acting early in development have important effects on health both in childhood and beyond," added Grant. "While we continue to learn more about the biology, an important implication is that designing prenatal interventions to improve birth weight could have lifelong health benefits."

Financial support for this study came from the National Institutes of Health (R01 HD056465), the Wellcome Trust, the Netherlands Organization for Scientific Research, the European Union, the Medical Research Council in the U.K., and the Academy of Finland.

"New loci associated with birth weight identify genetic links between intrauterine growth and adult height and metabolism," Nature Genetics, advance online publication, Dec. 2, 2012. doi:10.1038/ng.2477

About The Children's Hospital of Philadelphia: The Children's Hospital of Philadelphia was founded in 1855 as the nation's first pediatric hospital. Through its long-standing commitment to providing exceptional patient care, training new generations of pediatric healthcare professionals and pioneering major research initiatives, Children's Hospital has fostered many discoveries that have benefited children worldwide. Its pediatric research program is among the largest in the country, ranking third in National Institutes of Health funding. In addition, its unique family-centered care and public service programs have brought the 516-bed hospital recognition as a leading advocate for children and adolescents. For more information, visit http://www.chop.edu.

John Ascenzi | EurekAlert!
Further information:
http://www.chop.edu

More articles from Studies and Analyses:

nachricht Study relating to materials testing Detecting damages in non-magnetic steel through magnetism
23.07.2018 | Technische Universität Kaiserslautern

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>