Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Gallo Center study in mice links cocaine use to new brain structures

26.08.2013
UCSF scientists identify possible mechanism for drug-seeking behavior in humans

Mice given cocaine showed rapid growth in new brain structures associated with learning and memory, according to a research team from the Ernest Gallo Clinic and Research Center at UC San Francisco. The findings suggest a way in which drug use may lead to drug-seeking behavior that fosters continued drug use, according to the scientists.

The researchers used a microscope that allowed them to peer directly into nerve cells within the brains of living mice, and within two hours of giving a drug they found significant increases in the density of dendritic spines – structures that bear synapses required for signaling – in the animals' frontal cortex. In contrast, mice given saline solution showed no such increase.

The researchers also found a relationship between the growth of new dendritic spines and drug-associated learning. Specifically, mice that grew the most new spines were those that developed the strongest preference for being in the enclosure where they received cocaine rather than in the enclosure where they received saline. The team published its findings online in Nature Neuroscience on August 25, 2013.

"This gives us a possible mechanism for how drug use fuels further drug-seeking behavior," said principal investigator Linda Wilbrecht, PhD, a Gallo investigator now at UC Berkeley, but who led the research while she was on the UCSF faculty.

"It's been observed that long-term drug users show decreased function in the frontal cortex in connection with mundane cues or tasks, and increased function in response to drug-related activity or information," Wilbrecht said. "This research suggests how the brains of drug users might shift toward those drug-related associations."

In all living brains there is a baseline level of creation of new spines in response to, or in anticipation of, day-to-day learning, Wilbrecht said. By enhancing this growth, cocaine might be a super-learning stimulus that reinforces learning about the cocaine experience, she said.

The frontal cortex, which Wilbrecht called the "steering wheel" of the brain, controls functions such as long-term planning, decision-making and other behaviors involving higher reasoning and discipline.

The brain cells in the frontal cortex that Wilbrecht and her team studied regulate the output of this brain region, and may play a key role in decision-making. "These neurons, which are directly affected by cocaine use, have the potential to bias decision-making," she said.

Wilbrecht said the findings could potentially advance research in human addiction "by helping us identify what is going awry in the frontal cortexes of drug-addicted humans, and by explaining how drug-related cues come to dominate the brain's decision-making processes."

In the first of a series of experiments, the scientists gave cocaine injections to one group of mice and saline injections to another. The next day, they observed the animals' brain cells using a 2-photon laser scanning microscope. They were surprised to discover that even after the first dose, the mice treated with cocaine grew more new dendritic spines than the saline-treated mice.

In another experiment, they observed the mice before cocaine or saline treatment and then two hours afterward, and discovered that the animals that received cocaine were developing new dendritic spines within two hours after receiving the drug. Furthermore, the next morning, cocaine-induced spines accounted for almost four times more connections among nerve cells than was observed in saline-treated animals.

In a third experiment, the researchers for a week gave the mice cocaine in one distinctive chamber and saline in another, using identical procedures. Each chamber had its own characteristic visual design, texture and smell to distinguish it from the other chamber. They then let the mice choose which chamber to go to.

"The animals that showed the highest quantity of robust dendritic spines – the spines with the greatest likelihood of developing into synapses – showed the greatest change in preference toward the chamber where they received the cocaine," said Wilbrecht. "This suggests that the new spines might be material for the association that these mice have learned to make between the chamber and the drug."

Wilbrecht noted that the research would not have been possible without live brain imaging via the 2-photon laser scanning microscope, which was developed in 2002. "I grew up at the time of the famous public service campaign that showed a pan of frying eggs with the message, 'this is your brain on drugs,'" recalled Wilbrecht. "Now, with this microscope, we can actually say, 'this is a brain cell on drugs.'"

Co-authors of the study are Francisco Javier Munoz-Cuevas, PhD, and Jegath Athilingam of the Gallo Center, and Denise Piscopo, PhD, of the Gallo Center and the University of Oregon.

The study was supported by funds from the National Institutes of Health, the State of California, UCSF and the P. Royer and K. Clayton Family.

The UCSF-affiliated Ernest Gallo Clinic and Research Center is one of the world's preeminent academic centers for the study of the biological basis of alcohol and substance use disorders. Gallo Center discoveries of potential molecular targets for the development of therapeutic medications are extended through preclinical and proof-of-concept clinical studies.

UCSF is a leading university dedicated to promoting health worldwide through advanced biomedical research, graduate-level education in the life sciences and health professions, and excellence in patient care. It includes top-ranked graduate schools of dentistry, medicine, nursing and pharmacy, a graduate division with nationally renowned programs in basic biomedical, translational and population sciences, as well as a preeminent biomedical research enterprise and two top-ranked hospitals, UCSF Medical Center and UCSF Benioff Children's Hospital.

Jeffrey Norris | EurekAlert!
Further information:
http://www.ucsf.edu

More articles from Studies and Analyses:

nachricht Researchers simplify tiny structures' construction drip by drip
12.11.2018 | Princeton University, Engineering School

nachricht Mandibular movement monitoring may help improve oral sleep apnea devices
06.11.2018 | Elsevier

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

Im Focus: Coping with errors in the quantum age

Physicists at ETH Zurich demonstrate how errors that occur during the manipulation of quantum system can be monitored and corrected on the fly

The field of quantum computation has seen tremendous progress in recent years. Bit by bit, quantum devices start to challenge conventional computers, at least...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Epoxy compound gets a graphene bump

14.11.2018 | Materials Sciences

Microgel powder fights infection and helps wounds heal

14.11.2018 | Health and Medicine

How algae and carbon fibers could sustainably reduce the athmospheric carbon dioxide concentration

14.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>