Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Future medical conditions predicted with new statistical model

04.06.2012
Analyzing medical records from thousands of patients, statisticians have devised a statistical model for predicting what other medical problems a patient might encounter.

Like how Netflix recommends movies and TV shows or how Amazon.com suggests products to buy, the algorithm makes predictions based on what a patient has already experienced as well as the experiences of other patients showing a similar medical history.

"This provides physicians with insights on what might be coming next for a patient, based on experiences of other patients. It also gives a predication that is interpretable by patients," said Tyler McCormick, an assistant professor of statistics and sociology at the University of Washington.

The algorithm will be published in an upcoming issue of the journal Annals of Applied Statistics. McCormick's co-authors are Cynthia Rudin, Massachusetts Institute of Technology, and David Madigan, Columbia University.

McCormick said that this is one of the first times that this type of predictive algorithm has been used in a medical setting. What differentiates his model from others, he said, is that it shares information across patients who have similar health problems. This allows for better predictions when details of a patient's medical history are sparse.

For example, new patients might lack a lengthy file listing ailments and drug prescriptions compiled from previous doctor visits. The algorithm can compare the patient's current health complaints with other patients who have a more extensive medical record that includes similar symptoms and the timing of when they arise. Then the algorithm can point to what medical conditions might come next for the new patient.

"We're looking at each sequence of symptoms to try to predict the rest of the sequence for a different patient," McCormick said. If a patient has already had dyspepsia and epigastric pain, for instance, heartburn might be next.

The algorithm can also accommodate situations where it's statistically difficult to predict a less common condition. For instance, most patients do not experience strokes, and accordingly most models could not predict one because they only factor in an individual patient's medical history with a stroke. But McCormick's model mines medical histories of patients who went on to have a stroke and uses that analysis to make a stroke prediction.

The statisticians used medical records obtained from a multiyear clinical drug trial involving tens of thousands of patients aged 40 and older. The records included other demographic details, such as gender and ethnicity, as well as patients' histories of medical complaints and prescription medications.

They found that of the 1,800 medical conditions in the dataset, most of them – 1,400 – occurred fewer than 10 times. McCormick and his co-authors had to come up with a statistical way to not overlook those 1,400 conditions, while alerting patients who might actually experience those rarer conditions.

They came up with a statistical modeling technique that is grounded in Bayesian methods, the backbone of many predictive algorithms. McCormick and his co-authors call their approach the Hierarchical Association Rule Model and are working toward making it available to patients and doctors.

"We hope that this model will provide a more patient-centered approach to medical care and to improve patient experiences," McCormick said.

The work was funded by a Google Ph.D. fellowship awarded to McCormick and by the National Science Foundation.

For more information, contact McCormick at 206-221-6981 or tylermc@uw.edu. Download the Annals of Applied Statistics paper from McCormick's website: http://www.stat.washington.edu/~tylermc/

Molly McElroy | EurekAlert!
Further information:
http://www.uw.edu

More articles from Studies and Analyses:

nachricht Climate change and air pollution damaging health and causing millions of premature deaths
30.11.2018 | International Institute for Applied Systems Analysis (IIASA)

nachricht Reading rats’ minds
29.11.2018 | Institute of Science and Technology Austria

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

Inaugural "Virtual World Tour" scheduled for december

28.11.2018 | Event News

 
Latest News

A new molecular player involved in T cell activation

07.12.2018 | Life Sciences

High-temperature electronics? That's hot

07.12.2018 | Materials Sciences

Supercomputers without waste heat

07.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>