Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fracking prompts global spike in atmospheric methane

14.08.2019

As methane concentrations increase in the Earth’s atmosphere, chemical fingerprints point to a probable source: shale oil and gas, according to new Cornell University research published today (14 August) in Biogeosciences, a journal of the European Geosciences Union.

The research suggests that this methane has less carbon-13 relative to carbon-12 (denoting the weight of the carbon atom at the centre of the methane molecule) than does methane from conventional natural gas and other fossil fuels such as coal.


The picture on the left shows a gas storage tank as it would look to the naked eye. On the right, the picture was taken with a camera that visualises in the infrared range, which allows us to see methane gas being vented from the tank. This procedure is done regularly to keep the tank pressure at a safe level.

Credit: Howarth, Biogeosciences, 2019

This carbon-13 signature means that since the use of high-volume hydraulic fracturing – commonly called fracking – shale gas has increased in its share of global natural gas production and has released more methane into the atmosphere, according to the paper’s author, Robert Howarth, the David R. Atkinson Professor of Ecology and Environmental Biology at Cornell University in the US.

About two-thirds of all new gas production over the last decade has been shale gas produced in the United States and Canada, he said.

While atmospheric methane concentrations have been rising since 2008, the carbon composition of the methane has also changed. Methane from biological sources such as cows and wetlands have a low carbon-13 content – compared to methane from most fossil fuels. Previous studies erroneously concluded that biological sources are the cause of the rising methane, Howarth said.

Carbon dioxide and methane are critical greenhouse gases, but they behave quite differently in the atmosphere. Carbon dioxide emitted today will influence the climate for centuries to come, as the climate responds slowly to decreasing amounts of the gas.

Unlike its slow response to carbon dioxide, the atmosphere responds quickly to changes in methane emissions. “Reducing methane now can provide an instant way to slow global warming and meet the United Nations’ target of keeping the planet well below a 2-degree Celsius average rise,” Howarth said, referring to the 2015 Paris Agreement that boosts the global response to climate change threats.

Atmospheric methane levels had previously risen during the last two decades of the 20th century but levelled in the first decade of 21st century. Then, atmospheric methane levels increased dramatically from 2008–14, from about 570 teragrams (570 billion tons) annually to about 595 teragrams, due to global human-caused methane emissions in the last 11 years.

“This recent increase in methane is massive,” Howarth said. “It’s globally significant. It’s contributed to some of the increase in global warming we’ve seen and shale gas is a major player.”

“If we can stop pouring methane into the atmosphere, it will dissipate,” he said. “It goes away pretty quickly, compared to carbon dioxide. It’s the low-hanging fruit to slow global warming.”

The research published in Biogeosciences was funded by the Park Foundation and the Atkinson Center.

# # #

Please mention the name of the publication (Biogeosciences) if reporting on this story and, if reporting online, include a link to the paper (https://www.biogeosciences.net/16/3033/2019/) or to the journal website (https://www.biogeosciences.net/).

MORE INFORMATION
This press release is produced in collaboration with Cornell University. The research is presented in the paper ‘Ideas and perspectives: is shale gas a major driver of recent increase in global atmospheric methane?’ to be published in the EGU open access journal Biogeosciences on 14 August 2019.

The study was conducted by Robert W. Howarth (Department of Ecology & Evolutionary Biology, Cornell University, Ithaca, NY, US).

Citation: Howarth, R. W.: Ideas and perspectives: is shale gas a major driver of recent increase in global atmospheric methane?, Biogeosciences, 16, 3033–3046, doi:10.5194/bg-16-3033-2019, 2019.

The scientific article is available online, free of charge, from the publication date onward, at https://www.biogeosciences.net/16/3033/2019/ (this URL will redirect to the final, peer-reviewed paper after the embargo lifts). A pre-print version of the final paper is available for download under the "Media" section at https://www.egu.eu/news/506/new-study-fracking-prompts-global-spike-in-atmospher... while the embargo lasts.

The European Geosciences Union (EGU) is the leading organisation for Earth, planetary and space science research in Europe. With our partner organisations worldwide, we foster fundamental geoscience research, alongside applied research that addresses key societal and environmental challenges. Our vision is to realise a sustainable and just future for humanity and for the planet. We publish a number of diverse scientific journals, which use an innovative open access format, and organise topical meetings, and education and outreach activities. The annual EGU General Assembly is the largest and most prominent European geosciences event, attracting over 16,000 scientists from all over the world in 2019. The meeting’s sessions cover a wide range of topics, including volcanology, planetary exploration, the Earth’s internal structure and atmosphere, climate, as well as energy and resources. The EGU General Assembly 2020 is taking in Vienna, Austria, from 3 to 8 May 2020. For more information and press registration, please check https://www.egu.eu/gamedia closer to the time of the event, or follow the EGU on Twitter (@EuroGeosciences) and Facebook (European Geosciences Union).

If you wish to receive our press releases via email, please use the Press Release Subscription Form at http://www.egu.eu/news/subscribe/. Subscribed journalists and other members of the media receive EGU press releases under embargo (if applicable) at least 24 hours in advance of public dissemination.

Biogeosciences (BG) is a not-for-profit international scientific journal dedicated to the publication and discussion of research articles, short communications, and review papers on all aspects of the interactions between the biological, chemical, and physical processes in terrestrial or extraterrestrial life with the geosphere, hydrosphere, and atmosphere. The objective of the journal is to cut across the boundaries of established sciences and achieve an interdisciplinary view of these interactions. Experimental, conceptual, and modelling approaches are welcome.

Wissenschaftliche Ansprechpartner:

Researcher
Robert W. Howarth
David R. Atkinson Professor of Ecology and Environmental Biology
Department of Ecology & Evolutionary Biology
Cornell University, Ithaca, US
Phone: +1 607-280-9981
Email: howarth@cornell.edu
Languages: English

Press officers
Jeff Tyson
Media Relations Office
Cornell University
Phone: +1 607-255-7701 or +1 607-793-5769
Email: jeff.tyson@cornell.edu
Cornell Media Relations on Twitter: @CornellMedia

Bárbara Ferreira
EGU Media and Communications Manager
Munich, Germany
Phone: +49-89-2180-6703
Email: media@egu.eu
EGU on Twitter: @EuroGeosciences

Originalpublikation:

Howarth, R. W.: Ideas and perspectives: is shale gas a major driver of recent increase in global atmospheric methane?, Biogeosciences, 16, 3033–3046, doi:10.5194/bg-16-3033-2019, 2019.

Weitere Informationen:

http://www.biogeosciences.net/16/3033/2019/ – scientific study (the link will be active after the study is published on 14 August 15:00 CEST; embargoed preprint available in the Media section at https://www.egu.eu/news/506/new-study-fracking-prompts-global-spike-in-atmospher...)
http://www.biogeosciences.net/ – Journal: Biogeosciences
http://www.egu.eu/news/506/new-study-fracking-prompts-global-spike-in-atmospheri... – HTML version of this release

Dr. Bárbara Ferreira | EurekAlert!

More articles from Studies and Analyses:

nachricht Virtual treasure hunt shows brain maps time sequence of memories
06.08.2019 | Max-Planck-Institut für Kognitions- und Neurowissenschaften

nachricht Human torso simulator offers promise for new back brace innovations
01.08.2019 | Lancaster University

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A miniature stretchable pump for the next generation of soft robots

Soft robots have a distinct advantage over their rigid forebears: they can adapt to complex environments, handle fragile objects and interact safely with humans. Made from silicone, rubber or other stretchable polymers, they are ideal for use in rehabilitation exoskeletons and robotic clothing. Soft bio-inspired robots could one day be deployed to explore remote or dangerous environments.

Most soft robots are actuated by rigid, noisy pumps that push fluids into the machines' moving parts. Because they are connected to these bulky pumps by tubes,...

Im Focus: Vehicle Emissions: New sensor technology to improve air quality in cities

Researchers at TU Graz are working together with European partners on new possibilities of measuring vehicle emissions.

Today, air pollution is one of the biggest challenges facing European cities. As part of the Horizon 2020 research project CARES (City Air Remote Emission...

Im Focus: Self healing robots that "feel pain"

Over the next three years, researchers from the Vrije Universiteit Brussel, University of Cambridge, École Supérieure de Physique et de Chimie Industrielles de la ville de Paris (ESPCI-Paris) and Empa will be working together with the Dutch Polymer manufacturer SupraPolix on the next generation of robots: (soft) robots that ‘feel pain’ and heal themselves. The partners can count on 3 million Euro in support from the European Commission.

Soon robots will not only be found in factories and laboratories, but will be assisting us in our immediate environment. They will help us in the household, to...

Im Focus: Scientists create the world's thinnest gold

Scientists at the University of Leeds have created a new form of gold which is just two atoms thick - the thinnest unsupported gold ever created.

The researchers measured the thickness of the gold to be 0.47 nanometres - that is one million times thinner than a human finger nail. The material is regarded...

Im Focus: Study on attosecond timescale casts new light on electron dynamics in transition metals

An international team of scientists involving the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) in Hamburg has unraveled the light-induced electron-localization dynamics in transition metals at the attosecond timescale. The team investigated for the first time the many-body electron dynamics in transition metals before thermalization sets in. Their work has now appeared in Nature Physics.

The researchers from ETH Zurich (Switzerland), the MPSD (Germany), the Center for Computational Sciences of University of Tsukuba (Japan) and the Center for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

The power of thought – the key to success: CYBATHLON BCI Series 2019

16.08.2019 | Event News

4th Hybrid Materials and Structures 2020 28 - 29 April 2020, Karlsruhe, Germany

14.08.2019 | Event News

What will the digital city of the future look like? City Science Summit on 1st and 2nd October 2019 in Hamburg

12.08.2019 | Event News

 
Latest News

Working out why plants get sick

16.08.2019 | Life Sciences

Newfound superconductor material could be the 'silicon of quantum computers'

16.08.2019 | Physics and Astronomy

Stanford develops wireless sensors that stick to the skin to track our health

16.08.2019 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>