Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why does flu trigger asthma?

30.05.2011
Study suggests new therapeutic targets for virally-induced asthma attacks

When children with asthma get the flu, they often land in the hospital gasping for air. Researchers at Children's Hospital Boston have found a previously unknown biological pathway explaining why influenza induces asthma attacks.

Studies in a mouse model, published online May 29 by the journal Nature Immunology, reveal that influenza activates a newly recognized group of immune cells called natural helper cells – presenting a completely new set of drug targets for asthma.

If activation of these cells, or their asthma-inducing secretions, could be blocked, asthmatic children could be more effectively protected when they get the flu and possibly other viral infections, says senior investigator Dale Umetsu, MD, PhD, of Children's Division of Immunology.

Although most asthma is allergic in nature, attacks triggered by viral infection tend to be what put children in the hospital, reflecting the fact that this type of asthma isn't well controlled by existing drugs.

"Virtually 100 percent of asthmatics get worse with a viral infection," says Umetsu. "We really didn't know how that happened, but now we have an explanation, at least for influenza."

Natural helper cells were first, very recently, discovered in the intestines and are recognized to play a role in fighting parasitic worm infections as part of the innate immune system (our first line of immune defense).

"Since the lung is related to the gut – both are exposed to the environment – we asked if natural helper cells might also be in the lung and be important in asthma," Umetsu says.

Subsequent experiments, led by first authors Ya-Jen Chang, PhD, and Hye Young Kim, PhD, in Umetsu's lab, showed that the cells are indeed in the lung in a mouse model of influenza-induced asthma, but not in allergic asthma. The model showed that influenza A infection stimulates production of a compound called IL-33 that activates natural helper cells, which then secrete asthma-inducing compounds.

"Without these cells being activated, infection did not cause airway hyperreactivity, the cardinal feature of asthma," Umetsu says. "Now we can start to think of this pathway as a target – IL-33, the natural helper cell itself or the factors it produces."

Personalized medicine in asthma?

The study adds to a growing understanding of asthma as a collection of different processes, all causing airways to become twitchy and constricted. "In mouse models we're finding very distinct pathways," Umetsu says.

Most asthma-control drugs, such as inhaled corticosteroids, act on the best-known pathway, which involves immune cells known as TH2 cells, and which is important in allergic asthma. However, Umetsu's team showed in 2006 that a second group of cells, known as natural killer T-cells (NKT cells), are also important in asthma, and demonstrated their presence in the lungs of asthma patients. NKT cells, they showed, can function independently of TH2 cells, for example, when asthma is induced with ozone, a major component of air pollution. Compounds targeting NKT cells are now in preclinical development.

The recognition now of a third pathway for asthma, involving natural helper cells, may reflect the diversity of triggers for asthma seen in patients.

"Clinically, we knew there were different asthma triggers, but we thought there was only one pathway for asthma," Umetsu says, adding that all of the identified pathways can coexist in one person. "We need to understand the specific asthma pathways present in each individual with asthma and when they are triggered, so we can give the right treatment at the right time."

The study was funded by the National Institutes of Health.

Children's Hospital Boston is home to the world's largest research enterprise based at a pediatric medical center, where its discoveries have benefited both children and adults since 1869. More than 1,100 scientists, including nine members of the National Academy of Sciences, 12 members of the Institute of Medicine and 13 members of the Howard Hughes Medical Institute comprise Children's research community. Founded as a 20-bed hospital for children, Children's Hospital Boston today is a 395 bed comprehensive center for pediatric and adolescent health care grounded in the values of excellence in patient care and sensitivity to the complex needs and diversity of children and families. Children's also is the primary pediatric teaching affiliate of Harvard Medical School. For more information about research and clinical innovation at Children's, visit: http://vectorblog.org.

Erin McColgan | EurekAlert!
Further information:
http://www.childrenshospital.org

More articles from Studies and Analyses:

nachricht Drought hits rivers first and more strongly than agriculture
06.09.2018 | Max-Planck-Institut für Biogeochemie

nachricht Landslides triggered by human activity on the rise
23.08.2018 | European Geosciences Union

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Conference to pave the way for new therapies

17.10.2018 | Event News

Berlin5GWeek: Private industrial networks and temporary 5G connectivity islands

16.10.2018 | Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

 
Latest News

Robot-assisted sensor system for quality assurance of press-hardened components

17.10.2018 | Trade Fair News

Sensory Perception Is Not a One-Way Street

17.10.2018 | Life Sciences

Plant Hormone Makes Space Farming a Possibility

17.10.2018 | Agricultural and Forestry Science

VideoLinks
Science & Research
Overview of more VideoLinks >>>