Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why does flu trigger asthma?

30.05.2011
Study suggests new therapeutic targets for virally-induced asthma attacks

When children with asthma get the flu, they often land in the hospital gasping for air. Researchers at Children's Hospital Boston have found a previously unknown biological pathway explaining why influenza induces asthma attacks.

Studies in a mouse model, published online May 29 by the journal Nature Immunology, reveal that influenza activates a newly recognized group of immune cells called natural helper cells – presenting a completely new set of drug targets for asthma.

If activation of these cells, or their asthma-inducing secretions, could be blocked, asthmatic children could be more effectively protected when they get the flu and possibly other viral infections, says senior investigator Dale Umetsu, MD, PhD, of Children's Division of Immunology.

Although most asthma is allergic in nature, attacks triggered by viral infection tend to be what put children in the hospital, reflecting the fact that this type of asthma isn't well controlled by existing drugs.

"Virtually 100 percent of asthmatics get worse with a viral infection," says Umetsu. "We really didn't know how that happened, but now we have an explanation, at least for influenza."

Natural helper cells were first, very recently, discovered in the intestines and are recognized to play a role in fighting parasitic worm infections as part of the innate immune system (our first line of immune defense).

"Since the lung is related to the gut – both are exposed to the environment – we asked if natural helper cells might also be in the lung and be important in asthma," Umetsu says.

Subsequent experiments, led by first authors Ya-Jen Chang, PhD, and Hye Young Kim, PhD, in Umetsu's lab, showed that the cells are indeed in the lung in a mouse model of influenza-induced asthma, but not in allergic asthma. The model showed that influenza A infection stimulates production of a compound called IL-33 that activates natural helper cells, which then secrete asthma-inducing compounds.

"Without these cells being activated, infection did not cause airway hyperreactivity, the cardinal feature of asthma," Umetsu says. "Now we can start to think of this pathway as a target – IL-33, the natural helper cell itself or the factors it produces."

Personalized medicine in asthma?

The study adds to a growing understanding of asthma as a collection of different processes, all causing airways to become twitchy and constricted. "In mouse models we're finding very distinct pathways," Umetsu says.

Most asthma-control drugs, such as inhaled corticosteroids, act on the best-known pathway, which involves immune cells known as TH2 cells, and which is important in allergic asthma. However, Umetsu's team showed in 2006 that a second group of cells, known as natural killer T-cells (NKT cells), are also important in asthma, and demonstrated their presence in the lungs of asthma patients. NKT cells, they showed, can function independently of TH2 cells, for example, when asthma is induced with ozone, a major component of air pollution. Compounds targeting NKT cells are now in preclinical development.

The recognition now of a third pathway for asthma, involving natural helper cells, may reflect the diversity of triggers for asthma seen in patients.

"Clinically, we knew there were different asthma triggers, but we thought there was only one pathway for asthma," Umetsu says, adding that all of the identified pathways can coexist in one person. "We need to understand the specific asthma pathways present in each individual with asthma and when they are triggered, so we can give the right treatment at the right time."

The study was funded by the National Institutes of Health.

Children's Hospital Boston is home to the world's largest research enterprise based at a pediatric medical center, where its discoveries have benefited both children and adults since 1869. More than 1,100 scientists, including nine members of the National Academy of Sciences, 12 members of the Institute of Medicine and 13 members of the Howard Hughes Medical Institute comprise Children's research community. Founded as a 20-bed hospital for children, Children's Hospital Boston today is a 395 bed comprehensive center for pediatric and adolescent health care grounded in the values of excellence in patient care and sensitivity to the complex needs and diversity of children and families. Children's also is the primary pediatric teaching affiliate of Harvard Medical School. For more information about research and clinical innovation at Children's, visit: http://vectorblog.org.

Erin McColgan | EurekAlert!
Further information:
http://www.childrenshospital.org

More articles from Studies and Analyses:

nachricht Some brain tumors may respond to immunotherapy, new study suggests
11.12.2018 | Columbia University Irving Medical Center

nachricht Climate change and air pollution damaging health and causing millions of premature deaths
30.11.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>