Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Financial risk taking: Blame it on the genes

11.02.2009
Financial institutions continue to teeter on the brink of ruin. Banks are still devouring bailout money without loosening credit enough to make a difference in a recession that is sweeping the globe. And everyone keeps asking, "How in the world did so many financial titans take such huge risks with our nation's well being?"

A new Northwestern University study provides provocative insights that relate to, if not answer, that extraordinarily complex question.

The study, for the first time, links specific variants of two genes that regulate dopamine and serotonin neurotransmission to risk-taking in financial investment decisions.

Northwestern students were given real money to make a series of investments, in each trial deciding how to allocate money between a risky and a risk-free asset.

People with the short serotonin transporter gene, 5-HTTLPR (two copies of the short allele), relative to those with the long version of that polymorphism (at least one copy of the long allele), invested 28 percent less in a risky investment. Similarly, people who carry the 7-repeat allele of the DRD4 gene in the dopamine family, relative to those carrying other versions of that gene, invested about 25 percent more in a risky investment.

"Our research pinpoints, for the first time, the roles that specific variants of the serotonin transporter gene and the dopamine receptor gene, play in predicting whether people are more or less likely to take financial risks," said Camelia M. Kuhnen, assistant professor of finance, Kellogg School of Management at Northwestern. "It shows that individual variability in our genetic makeup effects economic behavior."

"Genetic Determinants of Financial Risk Taking will be published online Wednesday, Feb. 11, by the open-access journal PLoS ONE. The study's co-investigators are Kuhnen and Joan Y. Chiao, assistant professor of psychology at Northwestern.

Prior research linking the two genetic variants of 5-HTTLPR and DRD4 to, respectively, negative emotion and addiction behaviors suggested to the Northwestern researchers that those particular brain mechanisms could play a role in financial risk-taking. But until the Northwestern study, the identification of specific genes underlying financial-risk preferences remained elusive.

The study included 65 subjects (26 of which were male, and the average age was 22 years). Study participants completed 96 computer trials in an experiment designed to give them background information with which to make decisions between pairs of risky and risk-free investments. They were told the sure rate of return for the risk-free asset and the two possible rates of return for the risky asset, which were equally likely to occur. Typically, the risk-free asset return was close to 3 percent, while the two possible outcomes of the risky asset return were, for example, 20 percent and -10 percent, respectively.

Participants initially were given $15, but received additional funds for each of the 96 investment decisions. They allocated their funds between the two assets in each trial, but were not told the performance of their portfolios (how much money they were making or losing) until the end of the exercise. The entire experiment took 1.5 hours to complete, and the average pay per subject was $25.

As predicted by finance theory, participants invested significantly more money in the risky asset if its expected return was higher, the standard deviation of its return was lower or if the return of the safe asset was lower. Also the higher the amount available to participants, the more money they invested in the risky asset.

Following the investment tasks, genotyping was conducted to identify the 5-HTTLPR and DRD4 polymorphisms. Investigators collected saliva from each participant, and DNA was isolated and genotyped.

The Northwestern researchers were able to take advantage of advances in neuroscience methodology as well as emerging research on the two neurotransmitters' effects on decision-making.

"Emerging research told us, for example, that people higher in neuroticism are thought to carry the short allele of the 5-HTTLPR, a less efficient version of the serotonin transporter gene," said Chiao. "Similarly, individuals with the 7-repeat allele of DRD4, relative to those with a other variants of that neurotransmitter, are more likely to have higher novelty seeking behavior."

The Northwestern study suggests that researchers are getting closer to pinpointing specific genetic mechanisms underlying complex social and economic behavior that has been a mystery -- including drug addiction, gambling and risk-taking.

"As we sort through the devastating consequences of this financial crisis, it might be useful to note how our genetic heritage is influencing our economic behavior," said Chiao. "Think about how the excessive risks taken by just a few affected so many, from large institutions to average people."

But, Kuhnen cautions, more research is needed to further understand investor behavior, given the complex influences of nature versus nurture on financial decisions. Less than 30 percent of variation across people in risk-taking comes from genetics. The rest comes from experience and upbringing.

"Keep in mind," Kuhnen said, "that risk-taking in the marketplace may be the result of the genetic makeup of traders and investors, their past experiences in the stock market or their cultural background."

Pat Vaughan Tremmel | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Studies and Analyses:

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Oxygen loss in the coastal Baltic Sea is “unprecedentedly severe”
05.07.2018 | European Geosciences Union

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Research finds new molecular structures in boron-based nanoclusters

13.07.2018 | Materials Sciences

Algae Have Land Genes

13.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>