Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Field study shows why food quality will suffer with rising CO2

07.04.2014

For the first time, a field test has demonstrated that elevated levels of carbon dioxide inhibit plants' assimilation of nitrate into proteins, indicating that the nutritional quality of food crops is at risk as climate change intensifies.

For the first time, a field test has demonstrated that elevated levels of carbon dioxide inhibit plants' assimilation of nitrate into proteins, indicating that the nutritional quality of food crops is at risk as climate change intensifies.

Findings from this wheat field-test study, led by a UC Davis plant scientist, will be reported online April 6 in the journal Nature Climate Change.

"Food quality is declining under the rising levels of atmospheric carbon dioxide that we are experiencing," said lead author Arnold Bloom, a professor in the Department of Plant Sciences.

... more about:
»Agricultural »CO2 »Food »crops »dioxide »leaves »nitrate »nitrogen »proteins

"Several explanations for this decline have been put forward, but this is the first study to demonstrate that elevated carbon dioxide inhibits the conversion of nitrate into protein in a field-grown crop," he said.

The assimilation, or processing, of nitrogen plays a key role in the plant's growth and productivity. In food crops, it is especially important because plants use nitrogen to produce the proteins that are vital for human nutrition. Wheat, in particular, provides nearly one-fourth of all protein in the global human diet.

Many previous laboratory studies had demonstrated that elevated levels of atmospheric carbon dioxide inhibited nitrate assimilation in the leaves of grain and non-legume plants; however there had been no verification of this relationship in field-grown plants.

Wheat field study

To observe the response of wheat to different levels of atmospheric carbon dioxide, the researchers examined samples of wheat that had been grown in 1996 and 1997 in the Maricopa Agricultural Center near Phoenix, Ariz.

At that time, carbon dioxide-enriched air was released in the fields, creating an elevated level of atmospheric carbon at the test plots, similar to what is now expected to be present in the next few decades. Control plantings of wheat were also grown in the ambient, untreated level of carbon dioxide.

Leaf material harvested from the various wheat tests plots was immediately placed on ice, and then was oven dried and stored in vacuum-sealed containers to minimize changes over time in various nitrogen compounds.

A fast-forward through more than a decade found Bloom and the current research team able to conduct chemical analyses that were not available at the time the experimental wheat plants were harvested.

In the recent study, the researchers documented that three different measures of nitrate assimilation affirmed that the elevated level of atmospheric carbon dioxide had inhibited nitrate assimilation into protein in the field-grown wheat.

"These field results are consistent with findings from previous laboratory studies, which showed that there are several physiological mechanisms responsible for carbon dioxide's inhibition of nitrate assimilation in leaves," Bloom said.

3 percent protein decline expected

Bloom noted that other studies also have shown that protein concentrations in the grain of wheat, rice and barley — as well as in potato tubers — decline, on average, by approximately 8 percent under elevated levels of atmospheric carbon dioxide.

"When this decline is factored into the respective portion of dietary protein that humans derive from these various crops, it becomes clear that the overall amount of protein available for human consumption may drop by about 3 percent as atmospheric carbon dioxide reaches the levels anticipated to occur during the next few decades," Bloom said.

While heavy nitrogen fertilization could partially compensate for this decline in food quality, it would also have negative consequences including higher costs, more nitrate leaching into groundwater and increased emissions of the greenhouse gas nitrous oxide, he said.

###

In addition to Bloom, the research team on this study included Martin Burger, currently in UC Davis' Department of Land, Air and Water Resources; and Bruce A. Kimball and Paul J. Pinter, both of the U.S. Department of Agriculture's U.S. Arid-Land Agricultural Research Center in Maricopa, Ariz.

Funding for the study was provided by the National Science Foundation and the National Research Initiative competitive grants program of the U.S. Department of Agriculture's National Institute of Food and Agriculture.

About UC Davis

For more than 100 years, UC Davis has been one place where people are bettering humanity and our natural world while seeking solutions to some of our most pressing challenges. Located near the state capital, UC Davis has more than 33,000 students, over 2,500 faculty and more than 21,000 staff, an annual research budget of over $750 million, a comprehensive health system and 13 specialized research centers. The university offers interdisciplinary graduate study and more than 100 undergraduate majors in four colleges — Agricultural and Environmental Sciences, Biological Sciences, Engineering, and Letters and Science. It also houses six professional schools — Education, Law, Management, Medicine, Veterinary Medicine and the Betty Irene Moore School of Nursing.

Media contacts:

Arnold Bloom, Plant Sciences, (530) 752-1743, ajbloom@ucdavis.edu

Pat Bailey, UC Davis News Service, (530) 752-9843, pjbailey@ucdavis.edu

Patricia Bailey | EurekAlert!

Further reports about: Agricultural CO2 Food crops dioxide leaves nitrate nitrogen proteins

More articles from Studies and Analyses:

nachricht Some brain tumors may respond to immunotherapy, new study suggests
11.12.2018 | Columbia University Irving Medical Center

nachricht Climate change and air pollution damaging health and causing millions of premature deaths
30.11.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Data use draining your battery? Tiny device to speed up memory while also saving power

14.12.2018 | Power and Electrical Engineering

Tangled magnetic fields power cosmic particle accelerators

14.12.2018 | Physics and Astronomy

In search of missing worlds, Hubble finds a fast evaporating exoplanet

14.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>