Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fibrin-Derived Peptide FX06 Reduces Cardiac Reperfusion Injury

03.09.2008
ESC Congress 2008 - Hot Line III

Data presented today at the European Society of Cardiology Congress demonstrates the effectiveness of a peptide called FX06 in preventing cardiac damage resulting from treatment following a heart attack. While reperfusion is well established as a standard of care, it paradoxically causes additional damage to heart muscle in patients surviving from these attacks - a phenomenon termed “reperfusion injury”. FX06 is a novel compound intended to prevent that damage.

Professor Dan Atar, the Coordinating Investigator of the F.I.R.E. (FX06 In ischemia and REperfusion) trial, a Phase II clinical study of FX06, will present the results of the trial at: 12-noon on September 2nd in the Hot Line III Session at the European Society of Cardiology Congress in Munich, Germany.

“Re-establishment of blood flow, either by catheter-based balloon-intervention (PCI) or by thrombolysis, is necessary and life-saving in the treatment of acute myocardial infarctions. However, such interventions can lead to further damage to the heart muscle due to blood vessel dysfunction and inflammation,” said Dan Atar, Professor of Cardiology at the Aker University Hospital, University of Oslo, Norway. “Based on the F.I.R.E. results, FX06 has been shown to reduce damage to the heart muscle by inhibiting inflammation and protecting vascular function. We predict that FX06 may become a novel treatment for STEMI patients undergoing PCI, representing a major advance in acute cardiac care.”

The Phase II clinical trial of FX06 (F.I.R.E. study) was completed in March 2008, with data indicating a statistically significant reduction in myocardial necrosis following intravenous application of FX06 concurrent with reperfusion. FX06 is a peptide that binds to VE-cadherin, a target on the surfaces of endothelial cells, which form the inner cell layer of blood vessels, thereby preserving blood vessel function. This leads to reduced inflammation, reduced oedema and reduced infarct sizes.

About the study:

The F.I.R.E. (FX06 In Ischemia and REperfusion) trial was conducted between October 2006 and March 2008 as a randomized, double-blind, placebo-controlled study involving 234 patients from 26 leading centres of interventional cardiology in Europe. The study evaluated infarct size in patients undergoing percutaneous coronary intervention (PCI) for acute ST-segment elevation myocardial infarction (STEMI). FX06 was administered intravenously to patients during reperfusion treatment, and the effect on heart muscle preservation was then assessed using the most advanced imaging technology: cardiac magnetic resonance imaging (CMR). The primary endpoint was reduction in infarct size at five days after myocardial infarction.

Results showed that at 5 days post-PCI, the necrotic zone of the infarct was significantly reduced by 58% and the total affected zone of the left ventricle was reduced by 21%. This was accompanied by a reduction in markers of heart muscle cell necrosis. After 4 months, the resulting scar mass was reduced by 37%, suggesting that a reduction of reperfusion injury indeed may lead to decrease in scar tissue formation. Major adverse cardiac events in the FX06 group were also lower compared to the placebo group, which may indicate an effect of the drug on adverse patient outcome after an infarction.

Jacqueline Partarrieu | alfa
Further information:
http://www.escardio.org

More articles from Studies and Analyses:

nachricht New model connects respiratory droplet physics with spread of Covid-19
21.07.2020 | University of California - San Diego

nachricht Risk of infection with COVID-19 from singing: First results of aerosol study with the Bavarian Radio Chorus
03.07.2020 | Klinikum der Universität München

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: ScanCut project completed: laser cutting enables more intricate plug connector designs

Scientists at the Fraunhofer Institute for Laser Technology ILT have come up with a striking new addition to contact stamping technologies in the ERDF research project ScanCut. In collaboration with industry partners from North Rhine-Westphalia, the Aachen-based team of researchers developed a hybrid manufacturing process for the laser cutting of thin-walled metal strips. This new process makes it possible to fabricate even the tiniest details of contact parts in an eco-friendly, high-precision and efficient manner.

Plug connectors are tiny and, at first glance, unremarkable – yet modern vehicles would be unable to function without them. Several thousand plug connectors...

Im Focus: New Strategy Against Osteoporosis

An international research team has found a new approach that may be able to reduce bone loss in osteoporosis and maintain bone health.

Osteoporosis is the most common age-related bone disease which affects hundreds of millions of individuals worldwide. It is estimated that one in three women...

Im Focus: AI & single-cell genomics

New software predicts cell fate

Traditional single-cell sequencing methods help to reveal insights about cellular differences and functions - but they do this with static snapshots only...

Im Focus: TU Graz Researchers synthesize nanoparticles tailored for special applications

“Core-shell” clusters pave the way for new efficient nanomaterials that make catalysts, magnetic and laser sensors or measuring devices for detecting electromagnetic radiation more efficient.

Whether in innovative high-tech materials, more powerful computer chips, pharmaceuticals or in the field of renewable energies, nanoparticles – smallest...

Im Focus: Tailored light inspired by nature

An international research team with Prof. Cornelia Denz from the Institute of Applied Physics at the University of Münster develop for the first time light fields using caustics that do not change during propagation. With the new method, the physicists cleverly exploit light structures that can be seen in rainbows or when light is transmitted through drinking glasses.

Modern applications as high resolution microsopy or micro- or nanoscale material processing require customized laser beams that do not change during...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“Conference on Laser Polishing – LaP 2020”: The final touches for surfaces

23.07.2020 | Event News

Conference radar for cybersecurity

21.07.2020 | Event News

Contact Tracing Apps against COVID-19: German National Academy Leopoldina hosts international virtual panel discussion

07.07.2020 | Event News

 
Latest News

Rare Earth Elements in Norwegian Fjords?

06.08.2020 | Earth Sciences

Anode material for safe batteries with a long cycle life

06.08.2020 | Power and Electrical Engineering

Turning carbon dioxide into liquid fuel

06.08.2020 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>