Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Fast eye movements: A possible indicator of more impulsive decision-making

22.01.2014
Using a simple study of eye movements, Johns Hopkins scientists report evidence that people who are less patient tend to move their eyes with greater speed.

The findings, the researchers say, suggest that the weight people give to the passage of time may be a trait consistently used throughout their brains, affecting the speed with which they make movements, as well as the way they make certain decisions.

In a summary of the research to be published Jan. 21 in The Journal of Neuroscience, the investigators note that a better understanding of how the human brain evaluates time when making decisions might also shed light on why malfunctions in certain areas of the brain make decision-making harder for those with neurological disorders like schizophrenia, or for those who have experienced brain injuries.

Principal investigator Reza Shadmehr, Ph.D., professor of biomedical engineering and neuroscience at The Johns Hopkins University, and his team set out to understand why some people are willing to wait and others aren't. "When I go to the pharmacy and see a long line, how do I decide how long I'm willing to stand there?" he asks. "Are those who walk away and never enter the line also the ones who tend to talk fast and walk fast, perhaps because of the way they value time in relation to rewards?"

To address the question, the Shadmehr team used very simple eye movements, known as saccades, to stand in for other bodily movements. Saccades are the motions that our eyes make as we focus on one thing and then another. "They are probably the fastest movements of the body," says Shadmehr. "They occur in just milliseconds." Human saccades are fastest when we are teenagers and slow down as we age, he adds.

In earlier work, using a mathematical theory, Shadmehr and colleagues had shown that, in principle, the speed at which people move could be a reflection of the way the brain calculates the passage of time to reduce the value of a reward. In the current study, the team wanted to test the idea that differences in how subjects moved were a reflection of differences in how they evaluated time and reward.

For the study, the team first asked healthy volunteers to look at a screen upon which dots would appear one at a time ¬–– first on one side of the screen, then on the other, then back again. A camera recorded their saccades as they looked from one dot to the other. The researchers found a lot of variability in saccade speed among individuals but very little variation within individuals, even when tested at different times and on different days. Shadmehr and his team concluded that saccade speed appears to be an attribute that varies from person to person. "Some people simply make fast saccades," he says.

To determine whether saccade speed correlated with decision-making and impulsivity, the volunteers were told to watch the screen again. This time, they were given visual commands to look to the right or to the left. When they responded incorrectly, a buzzer sounded.

After becoming accustomed to that part of the test, they were forewarned that during the following round of testing, if they followed the command right away, they would be wrong 25 percent of the time. In those instances, after an undetermined amount of time, the first command would be replaced by a second command to look in the opposite direction.

To pinpoint exactly how long each volunteer was willing to wait to improve his or her accuracy on that phase of the test, the researchers modified the length of time between the two commands based on a volunteer's previous decision. For example, if a volunteer chose to wait until the second command, the researchers increased the time they had to wait each consecutive time until they determined the maximum time the volunteer was willing to wait — only 1.5 seconds for the most patient volunteer. If a volunteer chose to act immediately, the researchers decreased the wait time to find the minimum time the volunteer was willing to wait to improve his or her accuracy.

When the speed of the volunteers' saccades was compared to their impulsivity during the patience test, there was a strong correlation. "It seems that people who make quick movements, at least eye movements, tend to be less willing to wait," says Shadmehr. "Our hypothesis is that there may be a fundamental link between the way the nervous system evaluates time and reward in controlling movements and in making decisions. After all, the decision to move is motivated by a desire to improve one's situation, which is a strong motivating factor in more complex decision-making, too."

The other authors of the report are Jennie Choi and Pavan Vaswani of the Johns Hopkins University School of Medicine.

This work was supported by grants from the National Institute of Neurological Disorders and Stroke (NS078311) and the Human Frontier Science Program.

On the Web:

Link to article: http://dx.doi.org/10.1523/jneurosci.2798-13.2013

Shadmehr Lab: http://www.bme.jhu.edu/people/primary.php?id=396

Catherine Kolf | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Studies and Analyses:

nachricht Climate change and air pollution damaging health and causing millions of premature deaths
30.11.2018 | International Institute for Applied Systems Analysis (IIASA)

nachricht Reading rats’ minds
29.11.2018 | Institute of Science and Technology Austria

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Small but ver­sat­ile; key play­ers in the mar­ine ni­tro­gen cycle can util­ize cy­anate and urea

10.12.2018 | Life Sciences

New method gives microscope a boost in resolution

10.12.2018 | Physics and Astronomy

Carnegie Mellon researchers probe hydrogen bonds using new technique

10.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>