Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Exposure to alkaline substances can result in damaged teeth

28.10.2009
It has long been known that acids can erode tooth enamel but a new Swedish study from the Sahlgrenska Academy at the University of Gothenburg, Sweden, shows that strong alkaline substances can damage teeth too - substances with high pH values can destroy parts of the organic content of the tooth, leaving the enamel more vulnerable.

The study was carried out at the Department of Occupational and Environmental Medicine at the Sahlgrenska Academy and published in the Journal of Dentistry.

"The study shows that exposure to alkaline substances can result in damaged teeth, but that the process is different to that caused by exposure to acidic drinks or acidic industrial vapours," says Fabian Taube, occupational hygienist and one of the researchers behind the study.

It was occupational injuries from reconditioning of cars that attracted the attention of the researchers. The common denominator was exposure to an alkaline degreaser that was sprayed onto various parts of the cars. The spray turned out to have a pH value of between 12 and 14, which is very alkaline.

"Exposure to this substance damaged the surface of the teeth resulting in "flaked" enamel," says Jörgen Norén, professor/senior dental officer at the Sahlgrenska Academy. "This type of damage markedly increases the risk of caries and other dental damage."

Alkaline degreasers are used in the food industry, among other things to clean professional kitchens, but are also common in car care industry and to remove vandalism painting.

"Occupational damage to teeth from exposure to alkaline substances is probably not as common as damage from acidic substances, but it becomes a problem when employers fail to inform employees of the risks or do not give them access to the right protective equipment," says Taube.

The study exposed extracted teeth to degreasers and other alkaline solutions. Enamel samples were then examined with a scanning electron microscope and analysed using various spectroscopic methods. The researchers found that organic material on the surface of the tooth dissolves rapidly. The results indicate that the organic components of the enamel are also affected, as the enamel becomes more porous.

"However, we were not able to show that alkaline substances change the composition of the minerals that constitute the main component of enamel," says Taube. "In that sense, it differs from the effects of exposure to acids."

The study was carried out with funding from the Swedish Council for Working Life and Social Research (FAS) and the Magnus Bergvall Foundation, among others.

TOOTH ENAMEL
Enamel, the body's hardest tissue, forms a layer over the teeth that is up to two millimetres thick. Just two per cent of the enamel is organic material, with the rest comprising various minerals and water. The organic component is made up of protein, lipids and citrate, whilst the inorganic component is made up of calcium hydroxylapatite and calcium fluorapatite.

For more information, please contact:

Journal: Journal of Dentistry
Title of article: Morphological and chemical characterization of tooth enamel exposed to alkaline agents.
Authors: Taube F, Ylmén R, Shchukarev A, Nietzsche S, Norén JG
PubMed ID: 19781592

Helena Aaberg | idw
Further information:
http://www.gu.se/

More articles from Studies and Analyses:

nachricht Antarctic Ice Sheet mass loss has increased
14.06.2018 | Technische Universität Dresden

nachricht WAKE-UP provides new treatment option for stroke patients | International study led by UKE
17.05.2018 | Universitätsklinikum Hamburg-Eppendorf

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>