Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How can evolutionary biology explain why we get cancer?

22.01.2013
Over 500 billion cells in our bodies will be replaced daily, yet natural selection has enabled us to develop defenses against the cellular mutations which could cause cancer.

It is this relationship between evolution and the body's fight against cancer which is explored in a new special issue of the Open Access journal Evolutionary Applications.

"Cancer is far from a single well-defined disease which we can identify and eradicate," said Dr Athena Aktipis, Director, Human and Social Evolution, Center for Evolution and Cancer at the University of California, San Francisco. "It is highly diverse and evolutionary theory allows us to consider cancer as a highly complex and evolving ecosystem. This approach can improve the understanding, treatment and prevention of a number of different cancer types."

By applying the principles of evolutionary biology papers in the special issue ask: Why do we get cancer, despite the body's powerful cancer suppression mechanisms? How do evolutionary principles like natural selection, mutation, and genetic drift, work in a cancer ecosystem? How can we use evolutionary theory to minimize the rate of cancers worldwide?

"Nowhere is the diversity of cancer better revealed than the many reasons why we remain vulnerable to it," said Dr Aktipis. "Evolutionary medicine allows us to see explanations for traits that leave organisms vulnerable to disease."

These evolutionary explanations include the role of environmental factors, such as the relationship between tobacco availability and lung cancer; co-evolution with fast evolving pathogens; constraints on what selection can do; trade-offs, such as the capacity for tissue repair vs. risk of cancer; reproductive success at the expense of health; defenses with costs as well as benefits, such as inflammation.

"An evolutionary approach can unite and explain the many avenues of cancer research by allowing us to see cancer as an ecosystem," concluded Dr Aktipis. "Just as a forest depends on the individual characteristics of trees as well as the interactions of each tree with its environment; similarly tumors can be comprised of genetically distinct cells, which depend on both cell-to-cell interactions within the tumor, as well as on the interactions of tumor itself with the body."

This special issue is collaboration between scientists from the Darwinian Evolution of Cancer Consortium in France and the Center for Evolution and Cancer at the University of California, San Francisco. The issue is guest edited by Frederic Thomas, Michael Hochberg, Athena Aktipis, Carlo Maley and Ursula Hibner.

Papers from the Evolution and Cancer Special Issue are all freely available on the Evolutionary Applications website: www.evolutionaryapplications.org.

Ben Norman | EurekAlert!
Further information:
http://www.wiley.com

More articles from Studies and Analyses:

nachricht Climate change and air pollution damaging health and causing millions of premature deaths
30.11.2018 | International Institute for Applied Systems Analysis (IIASA)

nachricht Reading rats’ minds
29.11.2018 | Institute of Science and Technology Austria

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Small but ver­sat­ile; key play­ers in the mar­ine ni­tro­gen cycle can util­ize cy­anate and urea

10.12.2018 | Life Sciences

New method gives microscope a boost in resolution

10.12.2018 | Physics and Astronomy

Carnegie Mellon researchers probe hydrogen bonds using new technique

10.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>