Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Emory study shows babies grasp number, space and time concepts

16.06.2010
Even before they learn to speak, babies are organizing information about numbers, space and time in more complex ways than previously realized, a study led by Emory University psychologist Stella Lourenco finds.

"We've shown that 9-month-olds are sensitive to 'more than' or 'less than' relations across the number, size and duration of objects. And what's really remarkable is they only need experience with one of these quantitative concepts in order to guess what the other quantities should look like," Lourenco says.

Lourenco collaborated with neuroscientist Matthew Longo of University College London for the study, to be published in an upcoming issue of Psychological Science.

In his 1890 masterwork, "The Principles of Psychology," William James described the baby's impression of the world as "one great blooming, buzzing confusion."

Accumulating evidence is turning that long-held theory on its head.

"Our findings indicate that humans use information about quantity to organize their experience of the world from the first few months of life," Lourenco says. "Quantity appears to be a powerful tool for making predictions about how objects should behave."

Lourenco focuses on the development of spatial perception, and how it interfaces with other cognitive dimensions, such as numerical processing and the perception of time. Previous research suggests that these different cognitive domains are deeply connected at a neural level. Tests show, for instance, that adults associate smaller numbers with the left side of space and larger numbers with the right.

"It's like we have a ruler in our heads," Lourenco says of the phenomenon.

Other tests show that when adults are asked to quickly select the higher of two numbers, the task becomes much harder if the higher number is represented as physically smaller than the lower number.

Lourenco wanted to explore whether our brains just pick up on statistical regularities through repeated experience and language associations, or whether a generalized system of magnitude is present early in life.

Her lab designed a study that showed groups of objects on a computer screen to 9-month-old infants. "Babies like to stare when they see something new," Lourenco explains, "and we can measure the length of time that they look at these things to understand how they process information."

When the infants were shown images of larger objects that were black with stripes and smaller objects that were white with dots, they then expected the same color-pattern mapping for more-and-less comparisons of number and duration. For instance, if the more numerous objects were white with dots, the babies would stare at the image longer than if the objects were black with stripes.

"When the babies look longer, that suggests that they are surprised by the violation of congruency," Lourenco says. "They appear to expect these different dimensions to correlate in the world."

The findings suggest that humans may be born with a generalized system of magnitude. "If we are not born with this system, it appears that it develops very quickly," Lourenco says. "Either way, I think it's amazing how we use quantity information to make sense of the world."

Lourenco recently received a grant of $300,000 from the John Merck Fund, for young investors doing cognitive or biological science with implications for developmental disabilities. She plans to use it to further study how this system for processing quantitative information develops, both normally and in an atypical situation such as the learning disorder known as dyscalculia – the mathematical counterpart to dyslexia.

"Dyslexia has gotten a great deal of attention during the past couple of decades," Lourenco says. "But as our world keeps getting more technical, and students in the United States lag other countries in math, more attention is being paid to the need to reason about numbers, space and time. I'd like to explore the underlying causes of dyscalculia and maybe get a handle on how to intervene with children who have difficulty engaging in quantitative reasoning."

Emory University is known for its demanding academics, outstanding undergraduate experience, highly ranked professional schools and state-of-the-art research facilities. Perennially ranked as one of the country's top 20 national universities by U.S. News & World Report, Emory encompasses nine academic divisions as well as the Carlos Museum, The Carter Center, the Yerkes National Primate Research Center and Emory Healthcare, Georgia's largest and most comprehensive health care system.

Beverly Clark | EurekAlert!
Further information:
http://www.emory.edu
http://www.emory.edu/esciencecommons

Further reports about: babies grasp number time concepts

More articles from Studies and Analyses:

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Oxygen loss in the coastal Baltic Sea is “unprecedentedly severe”
05.07.2018 | European Geosciences Union

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>