Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Early Study Finds Brighter Fluorescent Lights Prevent Myopia

09.05.2012
Researchers at the University of Alabama at Birmingham hope to one day use fluorescent light bulbs to slow nearsightedness, which affects 40 percent of American adults and can cause blindness.

In an early step in that direction, results of a study found that small increases in daily artificial light slowed the development of nearsightedness by 40 percent in tree shrews, which are close relatives of primates.

The team, led by Thomas Norton, Ph.D., professor in the UAB Department of Vision Sciences, presented the study results today at the 2012 Association for Research in Vision and Ophthalmology annual meeting in Ft. Lauderdale.

People can see clearly because the front part of the eye bends light and focuses it on the retina in back. Nearsightedness, also called myopia, occurs when the physical length of the eye is too long, causing light to focus in front of the retina and blurring images.

Myopia has many causes, some related to inheritance and some to the environment. Research in recent years had, for instance, suggested that children who spent more time outdoors, presumably in brighter outdoor light, had less myopia as young adults. That raised the question of whether artificial light, like sunlight, could help reduce myopia development, without the risks of prolonged sun exposure, such as skin cancer and cataracts.

“Our hope is to develop programs that reduce the rate of myopia using energy efficient, fluorescent lights for a few hours each day in homes or classrooms,” said John Siegwart, Ph.D., research assistant professor in UAB Vision Sciences and co-author of the study. “Trying to prevent myopia by fixing defective genes through gene therapy or using a drug is a multi-year, multimillion-dollar effort with no guarantee of success. We hope to make a difference just with light bulbs.”

Sorting through theories

Work over 25 years had shown that putting a goggle over one eye of a study animal, one that lets in light but blurs images, causes the eye to grow too long, which in turn causes myopia. Other past studies had shown that elevated light levels could reduce myopia under these conditions, whether the light was produced by halogen lamps, metal halide bulbs or daylight. The current study is the first to show that the development of myopia can be slowed by increasing daily fluorescent light levels.

One prevailing theory on myopia-related shape changes in the eye is that they are caused by the blurriness of images experienced while reading or doing other near-work chores. Another holds some people develop myopia because they have low levels of vitamin D, which goes up with exposure to sunlight and could explain the connection between outdoor light and reduced myopia. A third theory, one reinforced by the current results, is that bright light causes an increase in levels of dopamine, a signaling molecule in the retina.

To test the theories, the team used a goggle that lets in light but no images to produce myopia in one eye of each tree shrew. They found that a group exposed to elevated fluorescent light levels for eight hours per day developed 47 percent less myopia than a control group exposed to normal indoor lighting, even though the images were neither more nor less blurry. They also found that animals fed vitamin D supplements developed myopia just like ones without the supplement. Given these results, the team is now experimenting with light levels and treatment times to see if a short, bright light treatment could be effective. They have also begun studies looking at the effect of elevated light on retinal dopamine levels as it relates to the reduction of myopia.

“If we can find the best kind of light, treatment period and light level, we’ll have the scientific justification to begin studies raising light levels in schools, for instance,” said Norton. “Compact fluorescent bulbs use much less electricity than standard light bulbs, and future programs raising light levels will have more impact the less expensive they are.”

About UAB

Known for its innovative and interdisciplinary approach to education at both the graduate and undergraduate levels, the University of Alabama at Birmingham is an internationally renowned research university and academic medical center and the state of Alabama’s largest employer with some 18,000 employees and an economic impact of more than $4.6 billion on the state. UAB has been named to the President’s Higher Education Community Service Honor Roll for exemplary service to America’s communities, and in 2008 ranked nationally as one of the top 5 “Best Places to Work in Academia” in a survey published by The Scientist magazine. For more information, please visit www.uab.edu.

EDITOR’S NOTE: The University of Alabama at Birmingham (UAB) is a separate, independent institution from the University of Alabama, which is located in Tuscaloosa. Please use University of Alabama at Birmingham on first reference and UAB on all consecutive references.

VIDEO: www.youtube.com/uabnews TEXT: www.uab.edu/news TWEETS: www.twitter.com/uabnews

Greg Williams | Newswise Science News
Further information:
http://www.uab.edu

More articles from Studies and Analyses:

nachricht Study relating to materials testing Detecting damages in non-magnetic steel through magnetism
23.07.2018 | Technische Universität Kaiserslautern

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Future electronic components to be printed like newspapers

A new manufacturing technique uses a process similar to newspaper printing to form smoother and more flexible metals for making ultrafast electronic devices.

The low-cost process, developed by Purdue University researchers, combines tools already used in industry for manufacturing metals on a large scale, but uses...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

The Maturation Pattern of the Hippocampus Drives Human Memory Deve

23.07.2018 | Science Education

FAU researchers identify Parkinson's disease as a possible autoimmune disease

23.07.2018 | Health and Medicine

O2 stable hydrogenases for applications

23.07.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>