Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Early Bottlenecks in Developing Biopharmaceutical Products Delay Commercialization

22.08.2014

An analysis of patented university inventions licensed to biotechnology firms has revealed early bottlenecks on the path to commercialization. To open these roadblocks, the researchers suggest that better communication of basic research results during the discovery stage could lead to faster commercialization down the road.

Biopharmaceutical drugs are frequently derived from discoveries made in university laboratories and licensed to biotechnology firms. Bottlenecks are well known during clinical trials, which have a high failure rate.


Georgia Institute of Technology

From left to right, Jerry Thursby, Matthew Higgins and Marie Thursby. The research team identified bottlenecks in the development of biopharmaceutical products and proposes a way to avoid the setbacks.

But a new study pinpoints how much time is lost earlier in the pathway, when biotech companies give up on an invention and transfer the technology to other biotech firms for repurposing in a new disease category.

Companies rarely share their basic research on an invention, which highlights what the researchers consider to be an underappreciated cost of commercialization as basic science research is then repeated, postponed, or never performed.

“The timeline for commercialization is much longer than most people think. There is so much turmoil and churn within the process,” said co-author Jerry Thursby, a professor and the Ernest Scheller, Jr. Chair in Innovation, Entrepreneurship, and Commercialization at the Scheller College of Business at the Georgia Institute of Technology.

The study was sponsored by the National Institutes of Health (NIH) and was published August 20 in the journal Science Translational Medicine.

The standard path to the marketplace for biotechnology is for universities to do most of the basic research and then license a discovery to a small biotechnology firm that advances the research. The small biotech firm will then sublicense the discovery to a large biotechnology firm that can afford to run clinical trials.

The study found that basic research rarely proceeds in this straightforward path to commercialization, often zigzagging across biotech firms and research areas before a drug is finally developed.

“What these data reveal is that there’s a lot of bench to bench translational research. It’s not linear,” said Marie Thursby, a study co-author and the Hal and John Smith Chair in Entrepreneurship at the Scheller College of Business. Matthew Higgins, an associate professor of strategic management, was also a co-author of the study.

For the study, the researchers built a database of 835 patents in 342 university licenses with biotech firms. The researchers then traced the path of patents to document whether they were subsequently sublicensed to another firm for testing in a new disease category or whether the sublicense was to a large firm for clinical trials or marketing. Sublicensing often resets the development timeline in what the authors refer to as bench-to-bench translational research.

“A very large fraction of the time, an invention pops out as something else and the timeline for the discovery stage starts all over again,” said Jerry Thursby.
Of the 835 inventions studied, 27 percent appeared in a second license. The average time between invention and first license was five and a half years, and the average time between first- and second-license was three and a half years.

This time span for the upstream phase of the translation process is substantial, the study says, given that the average time from discovery to approval of new drugs (including biologics) by the U.S. Food and Drug Administration (FDA) is 13 years.

Of the first-licenses that list a stage of development, 92 percent were either at the discovery or lead molecule stages (the earliest two stages, respectively), with only 6 percent listed in clinical trials. Among the second-licenses, only 22 percent were in clinical trials or beyond.

“Nobody knew the magnitude of how much licensing changes and the stages at which they change,” said Marie Thursby. “The biotechnology industry is quite fragmented, and there are all sorts of informational problems.”

This analysis of early-stage biomedical translation suggests that stakeholders need to design policies and initiatives that enhance early translation by more efficiently driving more inventions into multiple disease pipelines.

One option might be the formation of an open-source translational research database that complements clinicaltrials.gov, where patents and licenses for fundamental biomedical research believed to be destined for eventual therapeutic use initially would be logged and shared.

“What might be a failure to a biotech firm could be a success to society as a whole,” Jerry Thursby said.

This research is supported and based on three separate subcontracts with the Office of Science Policy Analysis, Office of the Director, National Institutes of Health, under award number HHSN26320100002IC. Any conclusions or opinions are those of the authors and do not necessarily represent the official views of the sponsoring agency.

CITATION: Marie Thursby, et al., “Bench-to-Bench Bottlenecks in Translation.” (Science Translational Medicine, August 2014).

Research News
Georgia Institute of Technology
177 North Avenue
Atlanta, Georgia 30332-0181 USA
@GTResearchNews

Contact Information

Brett Israel
Communications Officer II
brett.israel@comm.gatech.edu
Phone: 404-385-1933

Brett Israel | newswise

More articles from Studies and Analyses:

nachricht Climate change and air pollution damaging health and causing millions of premature deaths
30.11.2018 | International Institute for Applied Systems Analysis (IIASA)

nachricht Reading rats’ minds
29.11.2018 | Institute of Science and Technology Austria

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

Im Focus: Substitute for rare earth metal oxides

New Project SNAPSTER: Novel luminescent materials by encapsulating phosphorescent metal clusters with organic liquid crystals

Nowadays energy conversion in lighting and optoelectronic devices requires the use of rare earth oxides.

Im Focus: A bit of a stretch... material that thickens as it's pulled

Scientists have discovered the first synthetic material that becomes thicker - at the molecular level - as it is stretched.

Researchers led by Dr Devesh Mistry from the University of Leeds discovered a new non-porous material that has unique and inherent "auxetic" stretching...

Im Focus: The force of the vacuum

Scientists from the Theory Department of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science (CFEL) in Hamburg have shown through theoretical calculations and computer simulations that the force between electrons and lattice distortions in an atomically thin two-dimensional superconductor can be controlled with virtual photons. This could aid the development of new superconductors for energy-saving devices and many other technical applications.

The vacuum is not empty. It may sound like magic to laypeople but it has occupied physicists since the birth of quantum mechanics.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

Expert Panel on the Future of HPC in Engineering

03.12.2018 | Event News

 
Latest News

Small but ver­sat­ile; key play­ers in the mar­ine ni­tro­gen cycle can util­ize cy­anate and urea

10.12.2018 | Life Sciences

New method gives microscope a boost in resolution

10.12.2018 | Physics and Astronomy

Carnegie Mellon researchers probe hydrogen bonds using new technique

10.12.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>