Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Earlier flu viruses provided some immunity to current H1N1 influenza

16.10.2009
University of California, Davis, researchers studying the 2009 H1N1 influenza virus, formerly referred to as "swine flu," have identified a group of immunologically important sites on the virus that are also present in seasonal flu viruses that have been circulating for years. These molecular sites appear to result in some level of immunity to the new virus in people who were exposed to the earlier influenza viruses.

More than a dozen structural sites, or epitopes, in the virus may explain why many people over the age of 60, who were likely exposed to similar viruses earlier in life, carry antibodies or other type of immunity against the new virus, immune responses that could be attributed to earlier flu exposure and vaccinations.

Researchers Zheng Xing, a project scientist, and Carol Cardona, a veterinarian and Cooperative Extension specialist, both of the UC Davis School of Veterinary Medicine, report their findings online in the journal of Emerging Infectious Diseases. The report will appear in the November print edition of the journal, published by the Centers for Disease Control and Prevention.

"These findings indicate that human populations may have some level of existing immunity to the pandemic H1N1 influenza and may explain why the 2009 H1N1-related symptoms have been generally mild," Cardona said.

"Our hypothesis, based on the application of data collected by other researchers, suggests that cell-mediated immunity, as opposed to antibody-mediated immunity, may play a key role in lowering the disease-causing ability, or pathogenicity, of the 2009 H1N1 influenza," Xing added.

He noted that immune responses based on production of specific cells, known as cytotoxic T-cells, have been largely neglected in evaluating the efficacy of flu vaccinations. In this type of immune response, the T-cells and the antiviral chemicals that they secrete attack the invading viruses.

About 2009 H1N1 influenza

The 2009 H1N1 virus is a new strain of influenza that first appeared in the United States in April 2009. Early on, it was referred to as "swine flu" because it was genetically similar to influenza viruses that normally occur in pigs in North America. Further study, however, revealed that the virus actually included genes from viruses found in birds and humans, as well as pigs.

At first, this H1N1 influenza virus apparently caused a high number of deaths among patients in Mexico and among people with certain pre-existing medical conditions. But as it has progressed to become a pandemic or geographically widespread virus, H1N1 has caused relatively mild symptoms and few deaths.

One hallmark of this new influenza virus, according to the Centers for Disease Control and Prevention, has been the presence of pre-existing antibodies against the virus in about one third of H1N1 2009 patients over the age of 60, a phenomenon that suggested some levels of immunity may have existed to the new pandemic H1N1 virus. The UC Davis research

To probe this phenomenon, the UC Davis researchers surveyed data from earlier studies of epitopes known to exist on different strains of seasonal influenza A. They found that these epitopes, present in other seasonal H1N1 influenza strains around the world and capable of triggering an immune response, were also present in the strains of H1N1 2009 that were found in California, Texas and New York.

Interestingly, although previous H1N1 viruses seem to have produced a protective antibody response in exposed people, these antibodies largely did not provide cross-protection for individuals infected with the H1N1 2009 strain of influenza. The researchers theorize that, rather than stimulating protective antibodies, the epitopes of the new H1N1 2009 virus produced an immune response by triggering production of cytotoxic T-cells, which boost a person's immune defenses by killing infected cells and attacking the invading viruses.

Humans can mount two types of immune responses. One type is produced when the invading virus triggers production of protective antibodies that circulate in the bloodstream, and the other type, described above, is known as a cell-mediated immune response. It is produced when the invading virus triggers the activation of cytotoxic T-cells, a process that helps clear the virus from the body. Evidence from earlier studies suggests that cytotoxic T-cell immune immunity can be caused by either an active viral infection or by vaccination against such a virus.

Implications for avian influenza

The researchers note that about 80 percent of the epitopes found in seasonal influenza and flu vaccine viruses are also present in the highly pathogenic H5N1, or avian influenza, virus. They suggest that these epitopes may have protected some individuals infected with the highly pathogenic H5N1 virus through cytotoxic T-cell immunity.

However, the H5N1 virus rapidly reproduces itself and spreads so quickly within vital organs that the body may not be able to launch protective immunity, thus accounting for the high fatality rate of avian influenza.

Furthermore, only a fraction of the human population can recognize the specific epitopes necessary to cause the appropriate protective immune response, which may explain why the H1N1 2009 virus, as well as avian influenza, may vary in severity from person to person.

Xing and Cardona propose that immunity acquired from seasonal influenza or flu vaccinations may provide partial protection for patients infected with the avian influenza virus due to the shared epitopes essential for cytotoxic T-cell immunity.

This is supported by statistics from the World Health Organization indicating that there have been fewer avian influenza infections in people 40 years and older than there were in people under that age, and that the fatality rate of avian influenza was just 32 percent in the older age group but 59 percent in the younger group.

The researchers, therefore, suggest that repeated exposure to seasonal influenza viruses or flu vaccinations may have resulted in cytotoxic T-cell immunity to avian influenza, and that the same type of immunity may also have developed in people exposed to the H1N1 virus.

###

Funding for this study was provided by grants from the Department of Homeland Security's National Center for Foreign Animal and Zoonotic Disease Defense, and by the UC Davis Center for California Food Animal Health.

About UC Davis

For 100 years, UC Davis has engaged in teaching, research and public service that matter to California and transform the world. Located close to the state capital, UC Davis has 31,000 students, an annual research budget that exceeds $500 million, a comprehensive health system and 13 specialized research centers. The university offers interdisciplinary graduate study and more than 100 undergraduate majors in four colleges — Agricultural and Environmental Sciences, Biological Sciences, Engineering, and Letters and Science — and advanced degrees from six professional schools — Education, Law, Management, Medicine, Veterinary Medicine and the Betty Irene Moore School of Nursing.

Patricia Bailey | EurekAlert!
Further information:
http://www.ucdavis.edu

More articles from Studies and Analyses:

nachricht Antarctic Ice Sheet mass loss has increased
14.06.2018 | Technische Universität Dresden

nachricht WAKE-UP provides new treatment option for stroke patients | International study led by UKE
17.05.2018 | Universitätsklinikum Hamburg-Eppendorf

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Graphene assembled film shows higher thermal conductivity than graphite film

22.06.2018 | Materials Sciences

Fast rising bedrock below West Antarctica reveals an extremely fluid Earth mantle

22.06.2018 | Earth Sciences

Zebrafish's near 360 degree UV-vision knocks stripes off Google Street View

22.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>