Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New drug shows potential for treatment-resistant leukemia

12.04.2011
A study from Tufts Medical Center researchers published today finds that a novel drug shows promise for treating leukemia patients who have few other options because their disease has developed resistance to standard treatment.

Appearing in the journal Cancer Cell, the study is the first published report showing that the drug, DCC-2036, fights chronic myeloid leukemia (CML) in a mouse model of the disease and is effective against human leukemia cells.

"These findings demonstrate that DCC-2036 is an excellent candidate for clinical development as a treatment for resistant CML. Not all drugs that work in a test tube will actually be effective in a living organism such as our mouse model," said Richard Van Etten, MD, PhD, Director of Tuft's Medical Center's Cancer Center and senior author of the study.

Other authors of the study are scientists with Deciphera Pharmaceuticals LLC of Lawrence, Kansas, and Emerald Biostructures of Bainbridge Island, WA.

DCC-2036 is a tyrosine kinase inhibitor (TKI), a class of drugs that block the action of an abnormal enzyme, BCR-ABL1, that sends chemical messenges that tell CML cells to grow. The development of TKI drugs such as imatinib (Gleevec®) dramatically improved the prognosis for patients with CML, which strikes about 5,000 new patients each year in the United States. But about a third of patients will eventually relapse, principally because of mutations that render BCR-ABL1 resistant to the TKI. Such patients are left with few treatment options other than bone marrow transplantation.

The study showed that in human cells taken from treatment-resistant patients who had received the new drug, DCC-2036 tamped down the mutant enzyme that led to their relapse. The study also found that the drug killed malignant cells and prolonged survival in a mouse model of CML developed by Van Etten's team.

Deciphera Pharmaceuticals, LLC used crystal structures of BCR-ABL1 to custom-design the novel drug to inhibit the mutant enzyme that leads to treatment resistance in CML patients. "The study illustrates the power of designing drugs based upon structures of the target and initial testing of these drugs in mouse models before proceeding to the clinic. This type of targeted design is a paradigm for how cancer treatments will be developed in the 21st century," Van Etten said.

DCC-2036 is currently being tested in a phase 1 clinical trial in patients who have failed therapy with two other TKIs. The trial is actively enrolling patients at Tufts Medical Center, MD Anderson Cancer Center, and University of Michigan Cancer Center.

For more information about the trial, please contact the Neely Center for Clinical Cancer Research at Tufts Medical Center at 617-636-5558, or visit http://clinicaltrials.gov/ct2/show/NCT00827138.

About Tufts Medical Center:

Tufts Medical Center is an exceptional, not-for-profit, 415-bed academic medical center that is home to both a full-service hospital for adults and Floating Hospital for Children. Conveniently located in downtown Boston, the Medical Center is the principal teaching hospital for Tufts University School of Medicine. Floating Hospital for Children is the full-service children's hospital of Tufts Medical Center and the principal pediatric teaching hospital of Tufts University School of Medicine. For more information, please visit www.tuftsmedicalcenter.org.

Julie Jette | EurekAlert!
Further information:
http://www.tuftsmedicalcenter.org

Further reports about: BCR-ABL1 CML Cancer Floating LLC Medical Wellness TKI crystal structure human cell mouse model

More articles from Studies and Analyses:

nachricht Study relating to materials testing Detecting damages in non-magnetic steel through magnetism
23.07.2018 | Technische Universität Kaiserslautern

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

Im Focus: World record: Fastest 3-D tomographic images at BESSY II

The quality of materials often depends on the manufacturing process. In casting and welding, for example, the rate at which melts solidify and the resulting microstructure of the alloy is important. With metallic foams as well, it depends on exactly how the foaming process takes place. To understand these processes fully requires fast sensing capability. The fastest 3D tomographic images to date have now been achieved at the BESSY II X-ray source operated by the Helmholtz-Zentrum Berlin.

Dr. Francisco Garcia-Moreno and his team have designed a turntable that rotates ultra-stably about its axis at a constant rotational speed. This really depends...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

'Building up' stretchable electronics to be as multipurpose as your smartphone

14.08.2018 | Information Technology

During HIV infection, antibody can block B cells from fighting pathogens

14.08.2018 | Life Sciences

First study on physical properties of giant cancer cells may inform new treatments

14.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>