Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Drug helps purge hidden HIV virus, study shows

09.03.2012
A team of researchers at the University of North Carolina at Chapel Hill have successfully flushed latent HIV infection from hiding, with a drug used to treat certain types of lymphoma.

Tackling latent HIV in the immune system is critical to finding a cure for AIDS.

The results were presented today at the 19th Conference on Retroviruses and Opportunistic Infections in Seattle, Washington.

While current antiretroviral therapies can very effectively control virus levels, they can never fully eliminate the virus from the cells and tissues it has infected.

"Lifelong use of antiretroviral therapy is problematic for many reasons, not least among them are drug resistance, side effects, and cost," said David Margolis, MD, professor of medicine, microbiology and immunology, and epidemiology at the University of North Carolina at Chapel Hill. "We need to employ better long-term strategies, including a cure."

Margolis' new study is the first to demonstrate that the biological mechanism that keeps the HIV virus hidden and unreachable by current antiviral therapies can be targeted and interrupted in humans, providing new hope for a strategy to eradicate HIV completely.

In a clinical trial, six HIV-infected men who were medically stable on anti-AIDS drugs, received vorinostat, an oncology drug. Recent studies by Margolis and others have shown that vorinostat also attacks the enzymes that keep HIV hiding in certain CD4+ T cells, specialized immune system cells that the virus uses to replicate. Within hours of receiving the vorinostat, all six patients had a significant increase in HIV RNA in these cells, evidence that the virus was being forced out of its hiding place.

"This proves for the first time that there are ways to specifically treat viral latency, the first step towards curing HIV infection," said Margolis, who led the study. "It shows that this class of drugs, HDAC inhibitors, can attack persistent virus. Vorinostat may not be the magic bullet, but this success shows us a new way to test drugs to target latency, and suggests that we can build a path that may lead to a cure."

The research conducted is part of a UNC-led consortium, the Collaboratory of AIDS Researchers for Eradication (CARE), funded by the National Institute of Allergy and Infectious Diseases. The consortium is administered by the North Carolina Translational and Clinical Sciences (NC TraCS) Institute at UNC, one of 60 medical research institutions in the US working to improve biomedical research through the NIH Clinical and Translational Science Awards (CTSA) program.

Other UNC authors on the paper include Nanci Archin, PhD, Shailesh Choudary, PhD, Joann Kuruc, MSN, and Joseph Eron, MD of the medical school; Angela Kashuba, PharmD of the Eshelman School of Pharmacy; and Michael Hudgens, PhD, of the Gillings School of Global Public Health.

Funding for this research was provided by the National Institutes of Health, Merck & Co., and the James B. Pendleton Charitable Trust.

Lisa Chensvold | EurekAlert!
Further information:
http://www.unc.edu

More articles from Studies and Analyses:

nachricht ECG procedure indicates whether an implantable defibrillator will extend a patient's life
02.09.2019 | Technische Universität München

nachricht Fracking prompts global spike in atmospheric methane
14.08.2019 | European Geosciences Union

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A cavity leads to a strong interaction between light and matter

Researchers have succeeded in creating an efficient quantum-mechanical light-matter interface using a microscopic cavity. Within this cavity, a single photon is emitted and absorbed up to 10 times by an artificial atom. This opens up new prospects for quantum technology, report physicists at the University of Basel and Ruhr-University Bochum in the journal Nature.

Quantum physics describes photons as light particles. Achieving an interaction between a single photon and a single atom is a huge challenge due to the tiny...

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Kirigami inspires new method for wearable sensors

22.10.2019 | Materials Sciences

3D printing, bioinks create implantable blood vessels

22.10.2019 | Medical Engineering

Ionic channels in carbon electrodes for efficient electrochemical energy storage

22.10.2019 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>