Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Drug-embedded microparticles bolster heart function in animal studies

21.10.2008
Researchers at Emory University and Georgia Institute of Technology have developed tiny polymer beads that can slowly release anti-inflammatory drugs and break down into non-toxic components.

When injected into rats' hearts after a simulated heart attack, the drug-embedded "microparticles" reduce inflammation and scarring, the researchers found. Injecting the particles could cut the area of scar tissue formed after the heart attack in half and boost the ability of the heart to pump blood by 10 percent weeks later.

The results are published online this week and are scheduled for publication in the Oct/Nov issue of Nature Materials.

Doctors believe that certain anti-inflammatory drugs, if delivered directly into the heart after a heart attack, could prevent permanent damage and reduce the probability of heart failure later in life.

Fulfilling this idea -- getting drugs to the right place at the right time -- is more challenging than simply swallowing an aspirin, says senior author Michael Davis, PhD, assistant professor in the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University.

"If you look at previous studies to see what it would take to get enough of these drugs into the heart, they did things like direct injections twice a day," he says. "And there are clear toxicity issues if the whole body is exposed to the drug."

As an alternative, Davis and graduate student Jay Sy, the first author of the paper, turned to microscopic particles made of a material called polyketals, developed by co-author Niren Murthy, PhD, assistant professor of biomedical engineering.

The microparticles break down over a few weeks in the body, releasing the experimental drug SB239063. This drug inhibits an enzyme, MAP kinase, which is important during the damaging inflammation that occurs after a heart attack.

Davis says the drug gradually leaches out of the polyketal particles – half is gone after a week of just sitting around in warm water. In addition, the microparticles are broken down by white blood cells called macrophages.

"These are actually cells we're trying to reach with the drug, because they're involved in the inflammatory response in the heart," he says. "The macrophages can surround and eat the particles, or fuse together if the particles are too big."

Davis says polyketals have an advantage over other biodegradable polymers, in that they break down into neutral, excretable compounds that aren't themselves inflammatory.

Polyesters such as PLGA (polylactic-co-glycolic acid) are approved for use in sutures and grafts. However, when they are made into particles small enough to be broken down in the body, polyesters cause inflammation – exactly what the drugs are supposed to stop, he says.

When the particles were injected into rats' hearts, the researchers could see an inhibition of the MAP kinase enzyme lasting for a week. However, the effect on heart function was greater after 21 days. Davis says this result suggests that the main way the particles helped the heart was to prevent the scarring that sets in after the initial tissue damage of a heart attack.

He and Murthy are exploring polyketal particles as delivery vehicles for drugs or proteins in several organs: heart, liver, lungs and spinal cord.

Holly Korschun | EurekAlert!
Further information:
http://www.emory.edu

More articles from Studies and Analyses:

nachricht Self-organising system enables motile cells to form complex search pattern
07.05.2019 | Westfälische Wilhelms-Universität Münster

nachricht Mouse studies show minimally invasive route can accurately administer drugs to brain
02.05.2019 | Johns Hopkins Medicine

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer IDMT demonstrates its method for acoustic quality inspection at »Sensor+Test 2019« in Nürnberg

From June 25th to 27th 2019, the Fraunhofer Institute for Digital Media Technology IDMT in Ilmenau (Germany) will be presenting a new solution for acoustic quality inspection allowing contact-free, non-destructive testing of manufactured parts and components. The method which has reached Technology Readiness Level 6 already, is currently being successfully tested in practical use together with a number of industrial partners.

Reducing machine downtime, manufacturing defects, and excessive scrap

Im Focus: Successfully Tested in Praxis: Bidirectional Sensor Technology Optimizes Laser Material Deposition

The quality of additively manufactured components depends not only on the manufacturing process, but also on the inline process control. The process control ensures a reliable coating process because it detects deviations from the target geometry immediately. At LASER World of PHOTONICS 2019, the Fraunhofer Institute for Laser Technology ILT will be demonstrating how well bi-directional sensor technology can already be used for Laser Material Deposition (LMD) in combination with commercial optics at booth A2.431.

Fraunhofer ILT has been developing optical sensor technology specifically for production measurement technology for around 10 years. In particular, its »bd-1«...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

 
Latest News

2nd International Conference on UV LED Technologies & Applications – ICULTA 2020 | Call for Abstracts

24.06.2019 | Event News

'Sneezing' plants contribute to disease proliferation

24.06.2019 | Agricultural and Forestry Science

Researchers find new mutation in the leptin gene

24.06.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>