Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Drug-embedded microparticles bolster heart function in animal studies

21.10.2008
Researchers at Emory University and Georgia Institute of Technology have developed tiny polymer beads that can slowly release anti-inflammatory drugs and break down into non-toxic components.

When injected into rats' hearts after a simulated heart attack, the drug-embedded "microparticles" reduce inflammation and scarring, the researchers found. Injecting the particles could cut the area of scar tissue formed after the heart attack in half and boost the ability of the heart to pump blood by 10 percent weeks later.

The results are published online this week and are scheduled for publication in the Oct/Nov issue of Nature Materials.

Doctors believe that certain anti-inflammatory drugs, if delivered directly into the heart after a heart attack, could prevent permanent damage and reduce the probability of heart failure later in life.

Fulfilling this idea -- getting drugs to the right place at the right time -- is more challenging than simply swallowing an aspirin, says senior author Michael Davis, PhD, assistant professor in the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University.

"If you look at previous studies to see what it would take to get enough of these drugs into the heart, they did things like direct injections twice a day," he says. "And there are clear toxicity issues if the whole body is exposed to the drug."

As an alternative, Davis and graduate student Jay Sy, the first author of the paper, turned to microscopic particles made of a material called polyketals, developed by co-author Niren Murthy, PhD, assistant professor of biomedical engineering.

The microparticles break down over a few weeks in the body, releasing the experimental drug SB239063. This drug inhibits an enzyme, MAP kinase, which is important during the damaging inflammation that occurs after a heart attack.

Davis says the drug gradually leaches out of the polyketal particles – half is gone after a week of just sitting around in warm water. In addition, the microparticles are broken down by white blood cells called macrophages.

"These are actually cells we're trying to reach with the drug, because they're involved in the inflammatory response in the heart," he says. "The macrophages can surround and eat the particles, or fuse together if the particles are too big."

Davis says polyketals have an advantage over other biodegradable polymers, in that they break down into neutral, excretable compounds that aren't themselves inflammatory.

Polyesters such as PLGA (polylactic-co-glycolic acid) are approved for use in sutures and grafts. However, when they are made into particles small enough to be broken down in the body, polyesters cause inflammation – exactly what the drugs are supposed to stop, he says.

When the particles were injected into rats' hearts, the researchers could see an inhibition of the MAP kinase enzyme lasting for a week. However, the effect on heart function was greater after 21 days. Davis says this result suggests that the main way the particles helped the heart was to prevent the scarring that sets in after the initial tissue damage of a heart attack.

He and Murthy are exploring polyketal particles as delivery vehicles for drugs or proteins in several organs: heart, liver, lungs and spinal cord.

Holly Korschun | EurekAlert!
Further information:
http://www.emory.edu

More articles from Studies and Analyses:

nachricht Study relating to materials testing Detecting damages in non-magnetic steel through magnetism
23.07.2018 | Technische Universität Kaiserslautern

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Smallest transistor worldwide switches current with a single atom in solid electrolyte

17.08.2018 | Physics and Astronomy

Robots as Tools and Partners in Rehabilitation

17.08.2018 | Information Technology

Climate Impact Research in Hannover: Small Plants against Large Waves

17.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>