Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Drought hits rivers first and more strongly than agriculture

06.09.2018

A new study by researchers from Germany and Sweden has revealed the development of drought impacts, like in this summer, across Europe. The study shows that persisting and accumulating precipitation deficits cause decreased soil moisture within days and lower stream flows within weeks, while vegetation and crops can remain unaffected for several months.

The study reports that droughts develop slowly and have delayed and multi-faceted impacts. As such, the full drought phenomenon and its consequences are usually not readily perceived, in contrast to faster developing extreme weather events, like floods or heat waves.


Before crops wither and agriculture is affected, runoff and hence water resources are impacted.

picture: Andrea Carri (distributed via imaggeo.egu.eu), licensed under CC BY 3.0

“With the persistent rainfall deficit this summer across large parts of Western Europe, drought has recently become more perceivable. It has already caused serious societal and ecosystem impacts along its development pathways.” says Rene Orth, group leader at Max-Planck Institute for Biogeochemistry in Jena, Germany.

The study reveals these typical drought development pathways: rainfall deficits propagate first through soil moisture reductions, then to river runoff depletions, and finally cause impacts on vegetation and crop yields. Deciphering this partitioning of water deficits across different parts of the freshwater system is a crucial step forward in mitigation strategies, as the respective water anomalies threaten different societal sectors and ecosystems.

The researchers suggest that drought response measures need to be tailored based on their new findings on drought development: Early into a drought, response measures should focus on adapting to low(er) stream flows by more efficiently using and storing water.

Further into the drought, the focus should be on irrigation support of essential crops and vegetation, while balancing and temporarily limiting other water uses. “Such improved drought management might become even more relevant in the future, with possibly increasing drought frequency and/or magnitude as the climate changes” says Georgia Destouni, Professor at Stockholm University in Sweden.

The study was conducted by Rene Orth (rene.orth@bgc-jena.mpg.de), group leader at the Max Planck Institute for Biogeochemistry in Jena, Germany, and Georgia Destouni (georgia.destouni@natgeo.su.se), Professor at Stockholm University, Sweden.

Wissenschaftliche Ansprechpartner:

Dr. Renè Orth, Max Planck Institute for Biogeochemistry
Groupleader Hydrology-Biosphere-Climate Interactions
Email: rene.orth@bgc-jena.mpg.de
Phone: +49 3641 576250

Originalpublikation:

Orth R. and G. Destouni, 2018. Drought reduces blue-water fluxes more strongly than green-water fluxes in Europe, Nat. Commun. (2018) 9:3602
https://www.nature.com/articles/s41467-018-06013-7

Dr. Eberhard Fritz | Max-Planck-Institut für Biogeochemie

More articles from Studies and Analyses:

nachricht Landslides triggered by human activity on the rise
23.08.2018 | European Geosciences Union

nachricht Study relating to materials testing Detecting damages in non-magnetic steel through magnetism
23.07.2018 | Technische Universität Kaiserslautern

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Storage & Transport of highly volatile Gases made safer & cheaper by the use of “Kinetic Trapping"

Augsburg chemists present a new technology for compressing, storing and transporting highly volatile gases in porous frameworks/New prospects for gas-powered vehicles

Storage of highly volatile gases has always been a major technological challenge, not least for use in the automotive sector, for, for example, methane or...

Im Focus: Disrupting crystalline order to restore superfluidity

When we put water in a freezer, water molecules crystallize and form ice. This change from one phase of matter to another is called a phase transition. While this transition, and countless others that occur in nature, typically takes place at the same fixed conditions, such as the freezing point, one can ask how it can be influenced in a controlled way.

We are all familiar with such control of the freezing transition, as it is an essential ingredient in the art of making a sorbet or a slushy. To make a cold...

Im Focus: Micro energy harvesters for the Internet of Things

Fraunhofer IWS Dresden scientists print electronic layers with polymer ink

Thin organic layers provide machines and equipment with new functions. They enable, for example, tiny energy recuperators. In future, these will be installed...

Im Focus: Dynamik einzelner Proteine

Neue Messmethode erlaubt es Forschenden, die Bewegung von Molekülen lange und genau zu verfolgen

Das Zusammenspiel aus Struktur und Dynamik bestimmt die Funktion von Proteinen, den molekularen Werkzeugen der Zelle. Durch Fortschritte in der...

Im Focus: Dynamics of individual proteins

New measurement method allows researchers to precisely follow the movement of individual molecules over long periods of time

The function of proteins – the molecular tools of the cell – is governed by the interplay of their structure and dynamics. Advances in electron microscopy have...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

5th International Conference on Cellular Materials (CellMAT), Scientific Programme online

02.10.2018 | Event News

Major Project: The New Silk Road

01.10.2018 | Event News

"Boston calling": TU Berlin and the Weizenbaum Institute organize a conference in USA

21.09.2018 | Event News

 
Latest News

Physics: Not everything is where it seems to be

15.10.2018 | Physics and Astronomy

Microfluidic molecular exchanger helps control therapeutic cell manufacturing

15.10.2018 | Life Sciences

Link between Gut Flora and Multiple Sclerosis Discovered

15.10.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>