Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Double-jointed adolescents at risk for joint pain

28.02.2013
A prospective study by U.K. researchers found that adolescents who are double-jointed—medically termed joint hypermobility—are at greater risk for developing musculoskeletal pain as they get older, particularly in the shoulders, knees, ankles and feet. Findings published in Arthritis & Rheumatism, a journal of the American College of Rheumatology (ACR), indicate that children with joint hypermobility are approximately twice as likely to develop pain at these joints.

When ligaments are loose (ligamentous laxity) it may cause joints to extend beyond the normal range (hypermobility), with studies showing a possible genetic basis. However, when genetic causes are not found and joint pain is present, doctors may use the term 'benign joint hypermobility syndrome.'

Several studies have shown that joint pain is common in children with hypermobility, with some reports as high as 74% of children with joint hypermobility experiencing pain. Yet, other research suggests that while musculoskeletal pain is a frequent complaint in adolescents, it is no more common in those with joint hypermobility.

"With such conflicting evidence we set out to determine whether adolescents with joint hypermobility are at risk of developing musculoskeletal pain," explains lead author Professor Jon Tobias from the University of Bristol, UK. In a study funded by Arthritis Research UK, the team recruited participants from the Avon Longitudinal Study of Parents and Children (ALSPAC), also known as Children of the 90s. Joint hypermobility was determined at roughly age 14 by a Beighton score of 6 or more out of a possible 9. Individual joints were determined to be hypermobile if, for example, the knees could be bent backwards or the thumbs could touch the wrist. At nearly age 18, participants were evaluated for joint pain by questionnaire.

Analysis of participants with complete data was conducted, with 1267 boys and 1634 girls evaluated. Approximately 5% of participants were hypermobile at age 14, and at age 18 close to 45% of participants reported any pain lasting one or more days. Joint hypermobility was associated with approximately a two-fold increased risk of moderately severe pain at the shoulder, knee, ankle and foot. Interestingly, this increased risk was particularly marked in obese participants, with over a ten-fold increased risk of knee pain observed in obese participants with hypermobility, possibly reflecting the role of mechanical factors.

Professor Tobias concludes, "Our study provides the first prospective evidence that adolescents who display joint hypermobility are at increased risk of developing musculoskeletal pain as they get older, particularly in the shoulder, knee, ankle or feet. Further investigation of increased joint pain in teens is warranted to determine if the long-term effects of joint hypermobility puts them at risk for developing osteoarthritis later in life."

Access the full study on the Wiley Press Room here. (To access PDFs and embargoed stories you must be logged in to the Press Room before clicking the link. Request a login here.)

Full citation: "Hypermobility is a Risk Factor for Musculoskeletal Pain in Adolescence: Findings from a Prospective Cohort Study." Jonathan H Tobias, Kevin Deere, Shea Palmer, Emma M Clark, Jacqui Clinch. Arthritis & Rheumatism; Published Online: February 28, 2013 (DOI: 10.1002/art.37836).

URL Upon Publication: http://doi.wiley.com/10.1002/art.37836

About the Author: Jon Tobias, MD, PhD is professor of rheumatology at the University of Bristol and consultant rheumatologist at North Bristol NHS Trust in the UK. To arrange an interview with Professor Tobias, please contact Jane Tadman, press officer at Arthritis Research UK on j.tadman@arthritisresearchuk.org.

About the Journal

Arthritis & Rheumatism is an official journal of the American College of Rheumatology (ACR) and covers all aspects of inflammatory disease. The American College of Rheumatology is the professional organization who share a dedication to healing, preventing disability, and curing the more than 100 types of arthritis and related disabling and sometimes fatal disorders of the joints, muscles, and bones. Members include practicing physicians, research scientists, nurses, physical and occupational therapists, psychologists, and social workers. The journal is published by Wiley on behalf of the ACR. For more information, please visit http://onlinelibrary.wiley.com/journal/10.1002/art.

About Wiley

Founded in 1807, John Wiley & Sons, Inc. has been a valued source of information and understanding for more than 200 years, helping people around the world meet their needs and fulfill their aspirations. Wiley and its acquired companies have published the works of more than 450 Nobel laureates in all categories: Literature, Economics, Physiology or Medicine, Physics, Chemistry, and Peace.

Wiley is a global provider of content and content-enabled workflow solutions in areas of scientific, technical, medical, and scholarly research; professional development; and education. Our core businesses produce scientific, technical, medical, and scholarly journals, reference works, books, database services, and advertising; professional books, subscription products, certification and training services and online applications; and education content and services including integrated online teaching and learning resources for undergraduate and graduate students and lifelong learners. Wiley's global headquarters are located in Hoboken, New Jersey, with operations in the U.S., Europe, Asia, Canada, and Australia. The Company's Web site can be accessed at http://www.wiley.com. The Company is listed on the New York Stock Exchange under the symbols JWa and JWb.

Dawn Peters | EurekAlert!
Further information:
http://www.wiley.com

More articles from Studies and Analyses:

nachricht Study relating to materials testing Detecting damages in non-magnetic steel through magnetism
23.07.2018 | Technische Universität Kaiserslautern

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Staying in Shape

16.08.2018 | Life Sciences

Diving robots find Antarctic seas exhale surprising amounts of carbon dioxide in winter

16.08.2018 | Earth Sciences

Protein droplets keep neurons at the ready and immune system in balance

16.08.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>