Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Do microplastics harbour additional risks by colonization with harmful bacteria?


The alarming omnipresence of microplastics in rivers, lakes, and oceans increasingly gains the critical focus of research. So far, however, there has been no reliable knowledge as to whether microplastic particles in aquatic ecosystems promote the development of special bacterial communities or even the spread of pathogens. A recent study within the project MikrOMIK* headed by the Leibniz Institute for Baltic Sea Research Warnemünde (IOW) has now for the first time systematically investigated whether bacterial biofilms on microplastic particles differ from those on natural materials and how various environmental factors such as salinity or nutrients influence the community composition.

Today, microplastics – plastic particles smaller than 5 millimetres – can be detected everywhere in the environment. Many hundreds of thousands particles per square kilometre can be found in seas and rivers, and not only in the vicinity of civilization hotspots, such as in the North Atlantic off New York or in the estuary of the river Rhine with its total of about 60 million inhabitants in the catchment area.

Microplastics are often created by the decay of larger plastic particles and can now be detected everywhere in the environment. In aquatic habitats the particles are colonised by bacterial biofilms.

IOW / B. Hentzsch

Even far away from any human settlement in the Arctic ice, the sediments of the deep sea or in the middle of the Pacific Ocean, the tiny waste is being found in huge quantities. Not only its ubiquity has alarmed science, but also initial findings about the harmfulness of the particles that accumulate environmental toxins on their surface and damage animals that ingest microplastics with their food.

“Although research has been concerned increasingly with the phenomenon of microplastic accumulation in the oceans for almost 15 years, astonishingly little is known about the influence of particles on ecosystems and the potential damage they actually cause,” says IOW microbiologist Matthias Labrenz and head of the project MikrOMIK*, which over three years investigated the role of microplastics in the Baltic Sea and their interaction with various organisms.

Of particular interest were the microorganisms that colonise microplastic particles. Despite their small size, the particles floating in water offer a solid surface on which dense biofilms can form, just like on natural particles. “We wanted to know whether there are bacteria that have specialised in the colonisation of plastic. Furthermore, there were singular but worrying observations, which indicated that pathogenic germs such as gangrene-causing Vibrio strains could accumulate on microplastics,” said Labrenz.

Such pathogens are part of the normal bacterial community in the sea. Diluted in the open water they usually are unproblematic. “Enrichment as biofilm on microplastics, however, could make them considerably more dangerous, since the plastic particles are more rapidly and further transported by drift than individual bacterial cells, which would promote the spread of the pathogens and thus increase the dangers for humans,” the IOW researcher explains the concern.

To find out whether biofilms on plastics differ from those on natural materials and what environmental factors affect their composition, Sonja Oberbeckmann, also an IOW scientist and first author of the recently published MikrOMIK* study, experimentally exposed plastic and wood pellets to different environmental conditions in the field.

The experimental set-up covered a whole gradient, including the less nutrient-rich marine environment of the Baltic Sea, the increasing influence of freshwater in the estuary of the river Warnow and nutrient-rich freshwater conditions in the Warnow further upstream and within a sewage treatment plant that drains into the river. The newly formed biofilms on the pellets were genetically characterized after two weeks of incubation in order to compare their composition.

“Good news first: We found vibrions in our samples, but they did not accumulate on plastic. On the contrary: We were even able to show that they occur in smaller numbers there than on natural particles,” project leader Matthias Labrenz comments on the results. “This fits in with the results of previous MikrOMIK* studies: They investigated whether mussels and lugworms, both very common marine organisms and known natural vibrion carriers, enrich microplastic particles with these pathogens in their digestive tract. This was not the case,” Labrenz continues.

“However, another finding of our current field study in the Warnow and the Baltic Sea deserves special attention,” adds Sonja Oberbeckmann. “In the sewage treatment plant, the bacterial genus Sphingopyxis, which often develops antibiotic resistance, was more common on plastic particles than on natural particles. Microplastics may therefore be hotspots for the gene transfer of such potentially dangerous resistances. We have just started new investigations to find out, to what extent this happens and whether these processes pose an environmental threat,” the microbiologist says. In the current study, the research team also identified other bacteria that probably specialise in the colonisation of plastics.

“For instance, the members of the genus Erythrobacter are interesting because they are able to degrade toxic polycyclic aromatic hydrocarbons that are found in the environment worldwide as a result of human activities and accumulate on microplastics due to their chemical properties,” Oberbeckmann explains.

Whether or not special bacterial communities develop on microplastics essentially depends on the respective environmental conditions. At the nutrient-rich stations of the field experiment, many of the “usual suspects” that prefer a sedentary lifestyle on particles to life in the open water were found in the biofilms of both, wood and plastic particles. At comparatively nutrient-poorer stations, on the other hand, the microplastics were colonised by bacterial communities that differed significantly from natural communities.

At this point, the two IOW scientists cannot draw a final conclusion as to whether microplastics harbour additional risks due to bacterial colonisation. “However, our results indicate that plastic pollution in a nutrient-poor environment has a much higher ecological relevance than previously thought. In these environments the development of plastic specific bacterial populations is actually promoted! This should be considered in particular for the plastic accumulation areas in the sea, such as the huge plastic vortices in the Atlantic,” Sonja Oberbeckmann and Matthias Labrenz conclude.

## Important peer-reviewed publications of the MikrOMIK project*:
(*short for “The role of microplastics as a carrier of microbial populations in the Baltic Sea ecosystem”), more info:

- Oberbeckmann, S., Kreikemeyer, B., Labrenz, M. (2018): „Environmental Factors Support the Formation of Specific Bacterial Assemblages on Microplastics“, Frontiers in Microbiology 8:2709,

- Kesy, K., Hentzsch, A., Klaeger, F., Oberbeckmann, S., Mothes, S., Labrenz, M. (2017): „Fate and stability of polyamide-associated bacterial assemblages after their passage through the digestive tract of the blue mussel Mytilus edulis“, Marine Pollution Bulletin 125, 132–138

- Kesy, K., Oberbeckmann, S., Müller, F., Labrenz, M. (2016): „Polystyrene influences bacterial assemblages in Arenicola marina-populated aquatic environments in vitro“, Environmental Pollution 219, 219-227

## Scientific contact:
Dr. Sonja Oberbeckmann | +49(0)381 5197 3464 |
PD Dr. Matthias Labrenz | +49(0)381 5197 378 |

## Press and Public Relations at IOW:
Dr. Kristin Beck | Phone: +49 (0)381 – 5197 135 |
Dr. Barbara Hentzsch | Phone: +49 (0)381 – 5197 102 |

IOW is a member of the Leibniz Association with currently 91 research institutes and scientific infrastructure facilities. The focus of the Leibniz Institutes ranges from natural, engineering and environmental sciences to economic, social and space sciences as well as to the humanities. The institutes are jointly financed at the state and national levels. The Leibniz Institutes employ a total of 18.100 people, of whom 9.200 are scientists. The total budget of the institutes is 1.6 billion Euros. (

Dr. Kristin Beck | idw - Informationsdienst Wissenschaft

Further reports about: Baltic Sea IOW Ostseeforschung bacteria harmful bacteria pathogens plastic

More articles from Studies and Analyses:

nachricht Self-organising system enables motile cells to form complex search pattern
07.05.2019 | Westfälische Wilhelms-Universität Münster

nachricht Mouse studies show minimally invasive route can accurately administer drugs to brain
02.05.2019 | Johns Hopkins Medicine

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Determining the Earth’s gravity field more accurately than ever before

Researchers at TU Graz calculate the most accurate gravity field determination of the Earth using 1.16 billion satellite measurements. This yields valuable knowledge for climate research.

The Earth’s gravity fluctuates from place to place. Geodesists use this phenomenon to observe geodynamic and climatological processes. Using...

Im Focus: Tube anemone has the largest animal mitochondrial genome ever sequenced

Discovery by Brazilian and US researchers could change the classification of two species, which appear more akin to jellyfish than was thought.

The tube anemone Isarachnanthus nocturnus is only 15 cm long but has the largest mitochondrial genome of any animal sequenced to date, with 80,923 base pairs....

Im Focus: Tiny light box opens new doors into the nanoworld

Researchers at Chalmers University of Technology, Sweden, have discovered a completely new way of capturing, amplifying and linking light to matter at the nanolevel. Using a tiny box, built from stacked atomically thin material, they have succeeded in creating a type of feedback loop in which light and matter become one. The discovery, which was recently published in Nature Nanotechnology, opens up new possibilities in the world of nanophotonics.

Photonics is concerned with various means of using light. Fibre-optic communication is an example of photonics, as is the technology behind photodetectors and...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Latest News

Novel communications architecture for future ultra-high speed wireless networks

17.06.2019 | Information Technology

Climate Change in West Africa

17.06.2019 | Earth Sciences

Robotic fish to replace animal testing

17.06.2019 | Ecology, The Environment and Conservation

Science & Research
Overview of more VideoLinks >>>