Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Do microplastics harbour additional risks by colonization with harmful bacteria?

05.04.2018

The alarming omnipresence of microplastics in rivers, lakes, and oceans increasingly gains the critical focus of research. So far, however, there has been no reliable knowledge as to whether microplastic particles in aquatic ecosystems promote the development of special bacterial communities or even the spread of pathogens. A recent study within the project MikrOMIK* headed by the Leibniz Institute for Baltic Sea Research Warnemünde (IOW) has now for the first time systematically investigated whether bacterial biofilms on microplastic particles differ from those on natural materials and how various environmental factors such as salinity or nutrients influence the community composition.

Today, microplastics – plastic particles smaller than 5 millimetres – can be detected everywhere in the environment. Many hundreds of thousands particles per square kilometre can be found in seas and rivers, and not only in the vicinity of civilization hotspots, such as in the North Atlantic off New York or in the estuary of the river Rhine with its total of about 60 million inhabitants in the catchment area.


Microplastics are often created by the decay of larger plastic particles and can now be detected everywhere in the environment. In aquatic habitats the particles are colonised by bacterial biofilms.

IOW / B. Hentzsch

Even far away from any human settlement in the Arctic ice, the sediments of the deep sea or in the middle of the Pacific Ocean, the tiny waste is being found in huge quantities. Not only its ubiquity has alarmed science, but also initial findings about the harmfulness of the particles that accumulate environmental toxins on their surface and damage animals that ingest microplastics with their food.

“Although research has been concerned increasingly with the phenomenon of microplastic accumulation in the oceans for almost 15 years, astonishingly little is known about the influence of particles on ecosystems and the potential damage they actually cause,” says IOW microbiologist Matthias Labrenz and head of the project MikrOMIK*, which over three years investigated the role of microplastics in the Baltic Sea and their interaction with various organisms.

Of particular interest were the microorganisms that colonise microplastic particles. Despite their small size, the particles floating in water offer a solid surface on which dense biofilms can form, just like on natural particles. “We wanted to know whether there are bacteria that have specialised in the colonisation of plastic. Furthermore, there were singular but worrying observations, which indicated that pathogenic germs such as gangrene-causing Vibrio strains could accumulate on microplastics,” said Labrenz.

Such pathogens are part of the normal bacterial community in the sea. Diluted in the open water they usually are unproblematic. “Enrichment as biofilm on microplastics, however, could make them considerably more dangerous, since the plastic particles are more rapidly and further transported by drift than individual bacterial cells, which would promote the spread of the pathogens and thus increase the dangers for humans,” the IOW researcher explains the concern.

To find out whether biofilms on plastics differ from those on natural materials and what environmental factors affect their composition, Sonja Oberbeckmann, also an IOW scientist and first author of the recently published MikrOMIK* study, experimentally exposed plastic and wood pellets to different environmental conditions in the field.

The experimental set-up covered a whole gradient, including the less nutrient-rich marine environment of the Baltic Sea, the increasing influence of freshwater in the estuary of the river Warnow and nutrient-rich freshwater conditions in the Warnow further upstream and within a sewage treatment plant that drains into the river. The newly formed biofilms on the pellets were genetically characterized after two weeks of incubation in order to compare their composition.

“Good news first: We found vibrions in our samples, but they did not accumulate on plastic. On the contrary: We were even able to show that they occur in smaller numbers there than on natural particles,” project leader Matthias Labrenz comments on the results. “This fits in with the results of previous MikrOMIK* studies: They investigated whether mussels and lugworms, both very common marine organisms and known natural vibrion carriers, enrich microplastic particles with these pathogens in their digestive tract. This was not the case,” Labrenz continues.

“However, another finding of our current field study in the Warnow and the Baltic Sea deserves special attention,” adds Sonja Oberbeckmann. “In the sewage treatment plant, the bacterial genus Sphingopyxis, which often develops antibiotic resistance, was more common on plastic particles than on natural particles. Microplastics may therefore be hotspots for the gene transfer of such potentially dangerous resistances. We have just started new investigations to find out, to what extent this happens and whether these processes pose an environmental threat,” the microbiologist says. In the current study, the research team also identified other bacteria that probably specialise in the colonisation of plastics.

“For instance, the members of the genus Erythrobacter are interesting because they are able to degrade toxic polycyclic aromatic hydrocarbons that are found in the environment worldwide as a result of human activities and accumulate on microplastics due to their chemical properties,” Oberbeckmann explains.

Whether or not special bacterial communities develop on microplastics essentially depends on the respective environmental conditions. At the nutrient-rich stations of the field experiment, many of the “usual suspects” that prefer a sedentary lifestyle on particles to life in the open water were found in the biofilms of both, wood and plastic particles. At comparatively nutrient-poorer stations, on the other hand, the microplastics were colonised by bacterial communities that differed significantly from natural communities.

At this point, the two IOW scientists cannot draw a final conclusion as to whether microplastics harbour additional risks due to bacterial colonisation. “However, our results indicate that plastic pollution in a nutrient-poor environment has a much higher ecological relevance than previously thought. In these environments the development of plastic specific bacterial populations is actually promoted! This should be considered in particular for the plastic accumulation areas in the sea, such as the huge plastic vortices in the Atlantic,” Sonja Oberbeckmann and Matthias Labrenz conclude.

## Important peer-reviewed publications of the MikrOMIK project*:
(*short for “The role of microplastics as a carrier of microbial populations in the Baltic Sea ecosystem”), more info: http://www.io-warnemuende.de/mikromik-home.html):

- Oberbeckmann, S., Kreikemeyer, B., Labrenz, M. (2018): „Environmental Factors Support the Formation of Specific Bacterial Assemblages on Microplastics“, Frontiers in Microbiology 8:2709, http://doi.org/10.3389/fmicb.2017.02709

- Kesy, K., Hentzsch, A., Klaeger, F., Oberbeckmann, S., Mothes, S., Labrenz, M. (2017): „Fate and stability of polyamide-associated bacterial assemblages after their passage through the digestive tract of the blue mussel Mytilus edulis“, Marine Pollution Bulletin 125, 132–138

- Kesy, K., Oberbeckmann, S., Müller, F., Labrenz, M. (2016): „Polystyrene influences bacterial assemblages in Arenicola marina-populated aquatic environments in vitro“, Environmental Pollution 219, 219-227

## Scientific contact:
Dr. Sonja Oberbeckmann | +49(0)381 5197 3464 | sonja.oberbeckmann@io-warnemuende.de
PD Dr. Matthias Labrenz | +49(0)381 5197 378 | matthias.labrenz@io-warnemuende.de

## Press and Public Relations at IOW:
Dr. Kristin Beck | Phone: +49 (0)381 – 5197 135 | kristin.beck@io-warnemuende.de
Dr. Barbara Hentzsch | Phone: +49 (0)381 – 5197 102 | barbara.hentzsch@io-warnemuende.de

IOW is a member of the Leibniz Association with currently 91 research institutes and scientific infrastructure facilities. The focus of the Leibniz Institutes ranges from natural, engineering and environmental sciences to economic, social and space sciences as well as to the humanities. The institutes are jointly financed at the state and national levels. The Leibniz Institutes employ a total of 18.100 people, of whom 9.200 are scientists. The total budget of the institutes is 1.6 billion Euros. (http://www.leibniz-association.eu)

Dr. Kristin Beck | idw - Informationsdienst Wissenschaft

Further reports about: Baltic Sea IOW Ostseeforschung bacteria harmful bacteria pathogens plastic

More articles from Studies and Analyses:

nachricht Study relating to materials testing Detecting damages in non-magnetic steel through magnetism
23.07.2018 | Technische Universität Kaiserslautern

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Air pollution leads to cardiovascular diseases

21.08.2018 | Ecology, The Environment and Conservation

Researchers target protein that protects bacteria's DNA 'recipes'

21.08.2018 | Life Sciences

A paper battery powered by bacteria

21.08.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>