Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dietary fiber alters gut bacteria, supports gastrointestinal health

28.06.2012
A University of Illinois study shows that dietary fiber promotes a shift in the gut toward different types of beneficial bacteria.

And the microbes that live in the gut, scientists now believe, can support a healthy gastrointestinal tract as well as affect our susceptibility to conditions as varied as type 2 diabetes, obesity, inflammatory bowel disease, colon cancer, and autoimmune disorders such as rheumatoid arthritis.

As these microbes ferment fiber in the intestine, short-chain fatty acids and other metabolites are produced, resulting in many health benefits for the host, said Kelly Swanson, a U of I professor of animal sciences.

"When we understand what kinds of fiber best nurture these health-promoting bacteria, we should be able to modify imbalances to support and improve gastrointestinal health," he said.

This research suggests that fiber is good for more than laxation, which means helping food move through the intestines, he added.

"Unfortunately, people eat only about half of the 30 to 35 grams of daily fiber that is recommended. To achieve these health benefits, consumers should read nutrition labels and choose foods that have high fiber content," said Swanson.

In the placebo-controlled, double-blind intervention study, 20 healthy men with an average fiber intake of 14 grams a day were given snack bars to supplement their diet. The control group received bars that contained no fiber; a second group ate bars that contained 21 grams of polydextrose, which is a common fiber food additive; and a third group received bars with 21 grams of soluble corn fiber.

On days 16-21, fecal samples were collected from the participants, and researchers used the microbial DNA they obtained to identify which bacteria were present. DNA was then subjected to 454 pyrosequencing, a "fingerprinting" technique that provides a snapshot of all the bacterial types present.

Both types of fiber affected the abundance of bacteria at the phyla, genus, and species level. When soluble corn fiber was consumed, Lactobacillus, often used as a probiotic for its beneficial effects on the gut, increased. Faecalibacterium populations rose in the groups consuming both types of fiber.

According to Swanson, the shifts in bacteria seen in this study—which occurred when more and differing types of fiber were consumed—were the opposite of what you would find in a person who has poor gastrointestinal health. That leads him to believe that there are new possibilities for using pre- and probiotics to promote intestinal health.

"For example, one type of bacteria that thrived as a result of the types of fiber fed in this study is inherently anti-inflammatory, and their growth could be stimulated by using prebiotics, foods that promote the bacteria's growth, or probiotics, foods that contain the live microorganism," he said.

The study will appear in the July 2012 issue of the Journal of Nutrition and is available pre-publication online at http://www.ncbi.nlm.nih.gov/pubmed/22649263. Co-authors are Seema Hooda, Brittany M. Vester Boler, Mariana C. Rossoni Serao, and George C. Fahey Jr., all of the U of I Department of Animal Sciences; Jennifer M. Brulc, Michael A. Staeger, and Thomas W. Boileau, all of the General Mills, Inc., Bell Institute of Health and Nutrition; and Scot E. Dowd of MR DNA Molecular Research LP, Shallowater, TX. Funding was provided in part by General Mills.

Phyllis Picklesimer | EurekAlert!
Further information:
http://www.illinois.edu

More articles from Studies and Analyses:

nachricht ECG procedure indicates whether an implantable defibrillator will extend a patient's life
02.09.2019 | Technische Universität München

nachricht Fracking prompts global spike in atmospheric methane
14.08.2019 | European Geosciences Union

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Im Focus: Controlling superconducting regions within an exotic metal

Superconductivity has fascinated scientists for many years since it offers the potential to revolutionize current technologies. Materials only become superconductors - meaning that electrons can travel in them with no resistance - at very low temperatures. These days, this unique zero resistance superconductivity is commonly found in a number of technologies, such as magnetic resonance imaging (MRI).

Future technologies, however, will harness the total synchrony of electronic behavior in superconductors - a property called the phase. There is currently a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

International Symposium on Functional Materials for Electrolysis, Fuel Cells and Metal-Air Batteries

02.10.2019 | Event News

NEXUS 2020: Relationships Between Architecture and Mathematics

02.10.2019 | Event News

Optical Technologies: International Symposium „Future Optics“ in Hannover

19.09.2019 | Event News

 
Latest News

Fraunhofer LBF and BAM develop faster procedure for flame-retardant plastics

21.10.2019 | Materials Sciences

For EVs with higher range: Take greater advantage of the potential offered by lightweight construction materials

21.10.2019 | Materials Sciences

Benefit and risk: Meta-analysis draws a heterogeneous picture of drug-coated balloon angioplasty

21.10.2019 | Medical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>