Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Is the Dead Sea dying?

05.03.2009
Study shows human water extraction threatens Dead Sea levels

The water levels in the Dead Sea – the deepest point on Earth – are dropping at an alarming rate with serious environmental consequences, according to Shahrazad Abu Ghazleh and colleagues from the University of Technology in Darmstadt, Germany.

The projected Dead Sea-Red Sea or Mediterranean-Dead Sea Channels therefore need a significant carrying capacity to re-fill the Dead Sea to its former level, in order to sustainably generate electricity and produce freshwater by desalinization. The study1, published online this week in Springer’s journal, Naturwissenschaften, also shows that the drop in water levels is not the result of climate change; rather it is due to ever-increasing human water consumption in the area.

Normally, the water levels of closed lakes such as the Dead Sea reflect climatic conditions – they are the result of the balance between water running into the lake from the tributary area and direct precipitation, minus water evaporation. In the case of the Dead Sea, the change in water level is due to intensive human water consumption from the Jordan and Yarmouk Rivers for irrigation, as well as the use of Dead Sea water for the potash industry by both Israel and Jordan. Over the last 30 years, this water consumption has caused an accelerated decrease in water level (0.7 m/a), volume (0.47 km³/a) and surface area (4 km² /a), according to this study.

Abu Ghazleh and colleagues developed a model of the surface area and water volume of the Dead Sea and found that the lake has lost 14 km3 of water in the last 30 years. The receding water has left leveled sections on the lake’s sides – erosional terraces – which the authors recorded precisely for the first time using Differential Global Positioning System (DGPS) field surveys. They were able to date the terraces to specific years.

The authors point out that this rapid drop in the level of the Dead Sea has a number of detrimental consequences, including higher pumping costs for the factories using the Dead Sea to extract potash, salt and magnesium; an accelerated outflow of fresh water from surrounding underground water aquifers; receding shorelines making it difficult for tourists to access the water for medicinal purposes; and the creation of a treacherous landscape of sinkholes and mud as a result of the dissolution of buried salt which causes severe damage to roads and civil engineering structures.

To address the mounting stress on water resources in the Dead Sea basin and the environmental hazards caused by its lowering, the authors suggest that the diversion of Jordan water to the Mediterranean coast could be replaced by desalinization of seawater, causing the recession of the Dead Sea to be considerably slowed, and buying time to consider the long-term alternatives such as the Red Sea-Dead Sea Channel or the Mediterranean-Dead Sea Channel.

The authors conclude that either of these channels will require a carrying capacity of more than 0.9 km3 per year to slowly fill the lake back to its levels of 30 years ago and to ensure its long-term sustai-nability for energy production and desalinization to fresh water. Such a channel will also maintain tour-ism and potash industry on both sides of the Dead Sea.

Reference
1. Abu Ghazleh S et al (2009). Water input requirements of the rapidly shrinking Dead Sea. Naturwissenschaften; DOI 10.1007/s00114-009-0514-0

Renate Bayaz | EurekAlert!
Further information:
http://www.springer.com

More articles from Studies and Analyses:

nachricht When a fish becomes fluid
17.12.2018 | Institute of Science and Technology Austria

nachricht Some brain tumors may respond to immunotherapy, new study suggests
11.12.2018 | Columbia University Irving Medical Center

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Pressure tuned magnetism paves the way for novel electronic devices

18.12.2018 | Materials Sciences

New type of low-energy nanolaser that shines in all directions

18.12.2018 | Physics and Astronomy

NASA research reveals Saturn is losing its rings at 'worst-case-scenario' rate

18.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>