Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Crying baby draws blunted response in depressed mom's brain

23.02.2011
FMRI at the University of Oregon provides a window to see differences in brain responses

Mothers who are depressed respond differently to their crying babies than do non-depressed moms. In fact, their reaction, according to brain scans at the University of Oregon, is much more muted than the robust brain activity in non-depressed moms.

An infant crying is normal, but how mothers respond can affect a child's development, says Jennifer C. Ablow, professor of psychology. For years, Ablow has studied the relationship of behavior and physiological responses such as heart rate and respiration of mothers, both depressed and not, when they respond to their infants' crying.

A new study -- online in advance of publication in the journal Social Cognitive and Affective Neuroscience -- provides the first look at brain activity of depressed women responding to recordings of crying infants, either their own or someone else's. The brains of 22 women were scrutinized using functional magnetic resonance imaging (fMRI).

Non-invasive fMRI, when focused on the brain, measures blood flow changes using a magnetic field and radio frequency pulses, producing detailed images that provide scientists with information about brain activity or help medical staff diagnose disease.

Researchers considered both group differences between women with chronic histories of depression and those with no clinical diagnoses, and more subtle variations in the women's brain activity related to current levels of depressive symptoms. All were first time mothers whose babies were 18 months old.

"It looks as though depressed mothers are not responding in a more negative way than non-depressed mothers, which has been one hypothesis," said Heidemarie K. Laurent, assistant professor at the University of Wyoming, who led the study as a postdoctoral researcher in Ablow's lab. "What we saw was really more of a lack of responding in a positive way."

As a group, brain responses in non-depressed mothers responding to the sound of their own babies' cries were seen on both sides of the brain's lateral paralimbic areas and core limbic sub-cortical regions including the striatum, thalamus and midbrain; depressed mothers showed no unique response to their babies. Non-depressed mothers activated much more strongly than depressed mothers in a subcortical cluster involving the striatum -- specifically the caudate and nucleus accumbens -- and the medial thalamus. These areas are closely associated with the processing of rewards and motivation.

"In this context it was interesting to see that the non-depressed mothers were able to respond to this cry sound as a positive cue," Laurent said. "Their response was consistent with wanting to approach their infants. Depressed mothers were really lacking in that response. "

In a separate comparison, mothers who self-reported that they were more depressed at the time of their fMRI sessions displayed diminished prefrontal brain activity, particularly in the anterior cingulate cortex, when hearing their own baby's cries. This brain region, Laurent said, is associated with the abilities to evaluate information and to plan and regulate a response to emotional cues.

The important message of the study, Ablow and Laurent said, is that depression can exert long-lasting effects on mother-infant relationships by blunting the mother's response to her infant's emotional cues.

"A mother who is able to process and act upon relevant information will have more sensitive interactions with her infant, which, in turn, will allow the infant to develop its own regulation capacities," Ablow said. "Some mothers are unable to respond optimally to their infant's emotional cues. A mother's emotional response requires a coordination of multiple cortical and sub-cortical systems of the brain. How that plays out has not been well known."

The findings may suggest new implications for treating depression symptoms in mothers, Laurent said. "Some of these prefrontal problems may be changed more easily by addressing current symptoms, but there may be deeper, longer-lasting deficits at the motivational levels of the brain that will take more time to overcome," she said.

We regard the findings as a "jumping-off point" to better understand the neurobiology of the mothering brain, said Ablow, co-director of the UO's Developmental Sociobiology Lab. "In our next study, we plan to follow women from the prenatal period through their first-year of motherhood to get a fuller picture of how these brain responses shape mother-infant relationships during a critical period of their babies' development."

The National Science Foundation, through a grant to Ablow, and a National Institute of Mental Health postdoctoral fellowship to Laurent, funded the research. The project also received a pilot grant from the UO Brain Biology Machine Initiative through the Lewis Center for Neuroimaging.

About the University of Oregon

The University of Oregon is among 108 institutions chosen from 4,633 U.S. universities as providing "Very High Research Activity" in the 2010 Carnegie Classification of Institutions of Higher Education. The UO also is one of two Pacific Northwest members of the Association of American Universities.

Sources: Jennifer C. Ablow, associate professor of psychology, jcablow@uoregon.edu (Ablow currently is on sabbatical in France and accessible by email); Heidemarie K. Laurent, assistant professor of psychology, University of Wyoming, 307-766-3442, hlaurent@uwyo.edu.

Links:
Ablow faculty page: http://psychweb.uoregon.edu/people/ablow-jennifer
Developmental Sociobiology Lab: http://pages.uoregon.edu/dslab/DSL_Home.html
Laurent faculty page: http://www.uwyo.edu/PSYCHOLOGY/faculty/Laurent,%20H.%20.html

Lewis Center for Neuroimaging: http://lcni.uoregon.edu/

Jim Barlow | EurekAlert!
Further information:
http://www.uoregon.edu

More articles from Studies and Analyses:

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Oxygen loss in the coastal Baltic Sea is “unprecedentedly severe”
05.07.2018 | European Geosciences Union

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

NYSCF researchers develop novel bioengineering technique for personalized bone grafts

18.07.2018 | Life Sciences

Machine-learning predicted a superhard and high-energy-density tungsten nitride

18.07.2018 | Materials Sciences

Why might reading make myopic?

18.07.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>