Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Correlation between summer Arctic sea ice cover and winter weather in Central Europe

01.02.2012
Even if the current weather situation may seem to speak against it, the probability of cold winters with much snow in Central Europe rises when the Arctic is covered by less sea ice in summer.
Scientists of the Research Unit Potsdam of the Alfred Wegener Institute for Polar and Marine Research in the Helmholtz Association have decrypted a mechanism in which a shrinking summertime sea ice cover changes the air pressure zones in the Arctic atmosphere and impacts our European winter weather. These results of a global climate analysis were recently published in a study in the scientific journal Tellus A.

If there is a particularly large-scale melt of Arctic sea ice in summer, as observed in recent years, two important effects are intensified. Firstly, the retreat of the light ice surface reveals the darker ocean, causing it to warm up more in summer from the solar radiation (ice-albedo feedback mechanism). Secondly, the diminished ice cover can no longer prevent the heat stored in the ocean being released into the atmosphere (lid effect). As a result of the decreased sea ice cover the air is warmed more greatly than it used to be particularly in autumn and winter because during this period the ocean is warmer than the atmosphere. "These higher temperatures can be proven by current measurements from the Arctic regions", reports Ralf Jaiser, lead author of the publication from the Research Unit Potsdam of the Alfred Wegener Institute.

The warming of the air near to the ground leads to rising movements and the atmosphere becomes less stable. “We have analysed the complex non-linear processes behind this destabilisation and have shown how these altered conditions in the Arctic influence the typical circulation and air pressure patterns", explains Jaiser. One of these patterns is the air pressure difference between the Arctic and mid-latitudes: the so-called Arctic oscillation with the Azores highs and Iceland lows known from the weather reports. If this difference is high, a strong westerly wind will result which in winter carries warm and humid Atlantic air masses right down to Europe. If the wind does not come, cold Arctic air can penetrate down through to Europe, as was the case in the last two winters. Model calculations show that the air pressure difference with decreased sea ice cover in the Arctic summer is weakened in the following winter, enabling Arctic cold to push down to mid-latitudes.

Despite the low sea ice cover in summer 2011, a cold winter with much snow has so far not occurred here in Germany. Jaiser explains this as follows: "Many other factors naturally play a role in the complex climate system of our Earth which overlap in part. Our results explain the mechanisms of how regional changes in the Arctic sea ice cover have a global impact and their effects over a period from late summer to winter. Other mechanisms are linked, for example, with the snow cover in Siberia or tropical influences. The interactions between these influential factors will be the subject matter of future research work and therefore represent a factor of uncertainty in forecasts.”

It is the aim of the Potsdam researchers to find and analyse further mechanisms and to correctly show the Earth’s climate system with the help of these mechanisms in models. “Our work contributes to reducing the existing uncertainties of the global climate model and developing more credible regional climate scenarios – an important foundation to enable people to adjust to the altered conditions”, explains Prof. Dr. Klaus Dethloff, Head of the Atmospheric Circulation Section at the Research Unit Potsdam of the Alfred Wegener Institute.

Title of the original publication: R. Jaiser, K. Dethloff, D. Handorf, A. Rinke, J. Cohen, Impact of sea ice cover changes on the Northern Hemisphere atmospheric winter circulation, Tellus A 2012, 64, 11595, doi:10.3402/tellusa.v64i0.11595 (http://www.tellus.net/index.php/tellusa/article/view/11595)

Notes for Editors: Printable images are available at http://www.awi.de/en/news/press_releases/. Your contact partners in the Research Unit Potsdam of the Alfred Wegener Institute are Ralf Jaiser (Tel.: +49 (0)331/288-2167; email: Ralf.Jaiser@awi.de) and Prof. Dr. Klaus Dethloff (Tel.: +49 (0)331/288-2104; email: Klaus.Dethloff@awi.de). Your contact partner in the press office is Dr. Folke Mehrtens (Tel.: +49 (0)471/4831-2007; email: Folke.Mehrtens@awi.de). Please send us a copy on publication.

The Alfred Wegener Institute conducts research in the Arctic and Antarctic and in the high and mid-latitude oceans. The Institute coordinates German polar research and provides important infrastructure such as the research ice breaker Polarstern and research stations in the Arctic and Antarctic to the national and international scientific world. The Alfred Wegener Institute is one of the 18 research centres of the Helmholtz Association, the largest scientific organisation in Germany.

Ralf Röchert | idw
Further information:
http://www.awi.de

More articles from Studies and Analyses:

nachricht Statistical method developed at TU Dresden allows the detection of higher order dependencies
07.02.2020 | Technische Universität Dresden

nachricht Novel study underscores microbial individuality
13.12.2019 | Bigelow Laboratory for Ocean Sciences

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Freiburg researcher investigate the origins of surface texture

Most natural and artificial surfaces are rough: metals and even glasses that appear smooth to the naked eye can look like jagged mountain ranges under the microscope. There is currently no uniform theory about the origin of this roughness despite it being observed on all scales, from the atomic to the tectonic. Scientists suspect that the rough surface is formed by irreversible plastic deformation that occurs in many processes of mechanical machining of components such as milling.

Prof. Dr. Lars Pastewka from the Simulation group at the Department of Microsystems Engineering at the University of Freiburg and his team have simulated such...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

NUI Galway highlights reproductive flexibility in hydractinia, a Galway bay jellyfish

24.02.2020 | Life Sciences

KIST researchers develop high-capacity EV battery materials that double driving range

24.02.2020 | Materials Sciences

How earthquakes deform gravity

24.02.2020 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>