Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Conserving soil and water in dryland wheat region

25.11.2014

In the world’s driest rainfed wheat region, Washington State University researchers have identified summer fallow management practices that can make all the difference for farmers, water and soil conservation, and air quality.

Wheat growers in the Horse Heaven Hills of south-central Washington farm with an average of 6-8 inches of rain a year. Wind erosion has caused blowing dust that exceeded federal air quality standards 20 times in the past 10 years.


Harvesting hard red winter wheat at the western trial site in 2008 yielded 16 bushels per acre.

“Some of these events caused complete brown outs, zero visibility, closed freeways,” said WSU research agronomist Bill Schillinger.

Science to anchor farmer incentives

He and WSU agricultural economist Doug Young compared three fallow management systems in the western part of the Horse Heaven Hills with six inches of annual rainfall and the same practices in the eastern part with eight inches of rain.

The study was published in the Soil Science Society of America journal in September: Schillinger, W. F. and D. L. Young. (2014). Best Management Practices for Summer Fallow in the World’s Driest Rainfed Wheat Region. Soil Science Society of America Journal. 78:1707-1715 doi: 10.2136/sssaj2014.04.0168.

The five-year study provides the U.S. Department of Agriculture’s Natural Resources Conservation Service with science-based information needed to develop incentives for wheat farmers to change from traditional-tillage fallow practices to undercutter-tillage or no-till fallow systems.

Timing to trap moisture

Farmers in the Horse Heaven Hills practice a winter wheat-summer fallow rotation where only one crop is grown every other year on a given piece of land.

Average yields can be as low as 18 bushels per acre – compared to upwards of 120 bushels per acre in the higher rainfall area of the Palouse in eastern Washington. Though the margins are tight, with careful management wheat farming in the Horse Heaven Hills can be profitable.

To get the highest yield, farmers need to plant winter wheat in late August or early September after a year of fallow. The fallow period allows enough moisture from winter and spring rains to accumulate in the soil for seeds to get established.

“In east-central Washington, if you can’t plant in late summer into deep seed-zone moisture in fallow, then you have to wait for fall rains in mid-October or later,” Schillinger said.

The longer it takes to get winter wheat seedlings established, the lower the potential for good yields.

To help ensure precious soil moisture remains in the seeding zone, farmers till the soil in the spring. Tillage breaks up the capillary action of the soil; this helps slow soil moisture evaporation in the seed zone during the hot, dry summer months.

But too much tillage can cause soil loss through wind erosion that feeds hazardous dust storms.

Undercutting in the east

Compared to traditional tillage, Schillinger and Young found that undercutter tillage was the best option for fallow in the slightly moister eastern region of the Horse Heaven Hills, where late-August planting is possible and spring tillage helps retain summer soil moisture.

With wide, narrow-pitched, V-shaped blades, the undercutter slices beneath the soil surface to interrupt capillary action in the seed zone without causing much disturbance of the soil surface.

Schillinger said scientists and farmers have conclusively shown that spring tillage with the undercutter effectively retains seed-zone moisture. It also retains significantly greater surface residue and surface soil clods – which are less likely to be disturbed by wind and become airborne – compared to traditional tillage implements such as a tandem disk or field cultivator.

No till in the west

In the western region of the Horse Heaven Hills, the best option for controlling wind erosion was to practice no-till fallow; that is, to avoid tillage altogether. Most of the time, rainfall in this area simply isn’t sufficient to establish an early stand of winter wheat with any fallow management system.

“There’s no reason to till the soil when you already know in the spring that it will be too dry to plant wheat in late August,” Schillinger said.

Economist Young found that, despite the modest grain yield potential, wheat farming in this environment can be profitable – with enough acreage and judicious use of inputs to manage costs. In fact, late-planted winter wheat on no-till fallow was just as profitable as traditional-tillage and undercutter-tillage fallow treatments at the western site.

Contact:

Bill Schillinger, WSU Department of Crop and Soil Sciences, 509-235-1933, william.schillinger@wsu.edu

Bill Schillinger | EurekAlert!
Further information:
https://news.wsu.edu/2014/11/24/study-conserving-soil-and-water-in-dryland-wheat-region/#.VHRXXGF0zcs

Further reports about: Soil Science capillary action farmers moisture rainfall soil moisture wheat wind erosion

More articles from Studies and Analyses:

nachricht Rising CO2 has unforeseen strong impact on Arctic plant productivity
21.02.2019 | Max-Planck-Institut für Meteorologie

nachricht Scientists Create New Map of Brain’s Immune System
18.02.2019 | Universitätsklinikum Freiburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: (Re)solving the jet/cocoon riddle of a gravitational wave event

An international research team including astronomers from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has combined radio telescopes from five continents to prove the existence of a narrow stream of material, a so-called jet, emerging from the only gravitational wave event involving two neutron stars observed so far. With its high sensitivity and excellent performance, the 100-m radio telescope in Effelsberg played an important role in the observations.

In August 2017, two neutron stars were observed colliding, producing gravitational waves that were detected by the American LIGO and European Virgo detectors....

Im Focus: Light from a roll – hybrid OLED creates innovative and functional luminous surfaces

Up to now, OLEDs have been used exclusively as a novel lighting technology for use in luminaires and lamps. However, flexible organic technology can offer much more: as an active lighting surface, it can be combined with a wide variety of materials, not just to modify but to revolutionize the functionality and design of countless existing products. To exemplify this, the Fraunhofer FEP together with the company EMDE development of light GmbH will be presenting hybrid flexible OLEDs integrated into textile designs within the EU-funded project PI-SCALE for the first time at LOPEC (March 19-21, 2019 in Munich, Germany) as examples of some of the many possible applications.

The Fraunhofer FEP, a provider of research and development services in the field of organic electronics, has long been involved in the development of...

Im Focus: Regensburg physicists watch electron transfer in a single molecule

For the first time, an international team of scientists based in Regensburg, Germany, has recorded the orbitals of single molecules in different charge states in a novel type of microscopy. The research findings are published under the title “Mapping orbital changes upon electron transfer with tunneling microscopy on insulators” in the prestigious journal “Nature”.

The building blocks of matter surrounding us are atoms and molecules. The properties of that matter, however, are often not set by these building blocks...

Im Focus: University of Konstanz gains new insights into the recent development of the human immune system

Scientists at the University of Konstanz identify fierce competition between the human immune system and bacterial pathogens

Cell biologists from the University of Konstanz shed light on a recent evolutionary process in the human immune system and publish their findings in the...

Im Focus: Transformation through Light

Laser physicists have taken snapshots of carbon molecules C₆₀ showing how they transform in intense infrared light

When carbon molecules C₆₀ are exposed to an intense infrared light, they change their ball-like structure to a more elongated version. This has now been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Global Legal Hackathon at HAW Hamburg

11.02.2019 | Event News

The world of quantum chemistry meets in Heidelberg

30.01.2019 | Event News

Our digital society in 2040

16.01.2019 | Event News

 
Latest News

JILA researchers make coldest quantum gas of molecules

22.02.2019 | Physics and Astronomy

Understanding high efficiency of deep ultraviolet LEDs

22.02.2019 | Materials Sciences

Russian scientists show changes in the erythrocyte nanostructure under stress

22.02.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>