Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Conductive Cotton: Scientists Fashioning Electronic Future for Cotton Fiber

31.10.2011
The latest breakthrough in cotton fiber research has scientists envisioning hospital gowns that monitor medical patients and jerseys that test athletic performance, according to Cornell University fiber scientist Juan Hinestroza, co-author of a new study that reveals how everyday cotton can be turned into high-tech fabric.

Hinestroza, professor of fiber science in Cornell’s College of Human Ecology, is part of an international team that developed transistors using natural cotton fibers, gold nanoparticles and polymers. The research builds on his previous work indicating such technology is possible, and will be published in the December 2011 issue of the journal Organic Electronics (currently online at http://bit.ly/spb3Gw).

The innovation represents a significant step forward because it lays the groundwork for creating even more complex devices, such as cotton-based circuits, Hinestroza said. This would allow fabrics to sense body temperature, automatically heat up or cool down, track heart rate and blood pressure in high-risk patients, and monitor the physical effort of high-performance athletes.

“Perhaps one day we can even build computers out of cotton fibers in a similar way as khipus – a recording device based on knots and used by the Inca empire in Peru,” Hinestroza added.

In the study, the first step was aimed at creating a conformal layer of gold nanoparticles over the rough topography of cotton. The next layers were either conductive or semiconductive coatings; the final step was to build the devices. “The layers were so thin that the flexibility of the cotton fibers was preserved,” Hinestroza said.

Two kinds of active transistors, organic electrochemical transistors and organic field effect transistors, were also demonstrated. Both kinds are widely used in the electronics industry as components of integrated circuits, which control the functions of such common devices as phones, televisions and game consoles.

The study represented an interdisciplinary, collaborative effort between fiber scientists from Cornell, physicists from the University of Bologna, electrical engineers from the University of Cagliari and materials scientists from the Ecole Nationale Superieure des Mines de Saint Etienne in France.

Contact Syl Kacapyr for information about Cornell's TV and radio studios.

Syl Kacapyr | Newswise Science News
Further information:
http://www.cornell.edu

More articles from Studies and Analyses:

nachricht Statistical method developed at TU Dresden allows the detection of higher order dependencies
07.02.2020 | Technische Universität Dresden

nachricht Novel study underscores microbial individuality
13.12.2019 | Bigelow Laboratory for Ocean Sciences

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: New synthesis methods enhance 3D chemical space for drug discovery

After helping develop a new approach for organic synthesis -- carbon-hydrogen functionalization -- scientists at Emory University are now showing how this approach may apply to drug discovery. Nature Catalysis published their most recent work -- a streamlined process for making a three-dimensional scaffold of keen interest to the pharmaceutical industry.

"Our tools open up whole new chemical space for potential drug targets," says Huw Davies, Emory professor of organic chemistry and senior author of the paper.

Im Focus: Quantum fluctuations sustain the record superconductor

Superconductivity approaching room temperature may be possible in hydrogen-rich compounds at much lower pressures than previously expected

Reaching room-temperature superconductivity is one of the biggest dreams in physics. Its discovery would bring a technological revolution by providing...

Im Focus: New coronavirus module in SORMAS

HZI-developed app for disease control is expanded to stop the spread of the pathogen

At the end of December 2019, the first cases of pneumonia caused by a novel coronavirus were reported from the Chinese city of Wuhan. Since then, infections...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

70th Lindau Nobel Laureate Meeting: Around 70 Laureates set to meet with young scientists from approx. 100 countries

12.02.2020 | Event News

11th Advanced Battery Power Conference, March 24-25, 2020 in Münster/Germany

16.01.2020 | Event News

Laser Colloquium Hydrogen LKH2: fast and reliable fuel cell manufacturing

15.01.2020 | Event News

 
Latest News

Electric solid propellant -- can it take the heat?

14.02.2020 | Physics and Astronomy

Pitt study uncovers new electronic state of matter

14.02.2020 | Physics and Astronomy

Researchers observe quantum interferences in real-time using a new extreme ultra-violet light spectroscopy technique

14.02.2020 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>