Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Compounds in mate tea induce death in colon cancer cells

24.01.2012
Could preventing colon cancer be as simple as developing a taste for yerba mate tea?

In a recent University of Illinois study, scientists showed that human colon cancer cells die when they are exposed to the approximate number of bioactive compounds present in one cup of this brew, which has long been consumed in South America for its medicinal properties.

"The caffeine derivatives in mate tea not only induced death in human colon cancer cells, they also reduced important markers of inflammation," said Elvira de Mejia, a U of I associate professor of food chemistry and food toxicology.

That's important because inflammation can trigger the steps of cancer progression, she said.

In the in vitro study, de Mejia and former graduate student Sirima Puangpraphant isolated, purified, and then treated human colon cancer cells with caffeoylquinic acid (CQA) derivatives from mate tea. As the scientists increased the CQA concentration, cancer cells died as a result of apoptosis.

"Put simply, the cancer cell self-destructs because its DNA has been damaged," she said.

The ability to induce apoptosis, or cell death, is a promising tactic for therapeutic interventions in all types of cancer, she said.

de Mejia said they were able to identify the mechanism that led to cell death. Certain CQA derivatives dramatically decreased several markers of inflammation, including NF-kappa-B, which regulates many genes that affect the process through the production of important enzymes. Ultimately cancer cells died with the induction of two specific enzymes, caspase-3 and caspase-8, de Mejia said.

"If we can reduce the activity of NF-kappa-B, the important marker that links inflammation and cancer, we'll be better able to control the transformation of normal cells to cancer cells," she added.

The results of the study strongly suggest that the caffeine derivatives in mate tea have potential as anti-cancer agents and could also be helpful in other diseases associated with inflammation, she said.

But, because the colon and its microflora play a major role in the absorption and metabolism of caffeine-related compounds, the anti-inflammatory and anti-cancer effects of mate tea may be most useful in the colon.

"We believe there's ample evidence to support drinking mate tea for its bioactive benefits, especially if you have reason to be concerned about colon cancer. Mate tea bags are available in health food stores and are increasingly available in large supermarkets," she added.

The scientists have already completed and will soon publish the results of a study that compares the development of colon cancer in rats that drank mate tea as their only source of water with a control group that drank only water.

This in vitro study was published in Molecular Nutrition & Food Research, vol. 55, pp. 1509-1522, in 2011. Co-authors include Sirima Puangpraphant, now an assistant professor at Kasetsart University in Thailand; Greg Potts, an undergraduate student of the U of I; and Mark A. Berhow and Karl Vermillion of the USDA, ARS, National Center for Agricultural Utilization Research in Peoria, Illinois. The work was funded by the U of I Research Board and Puangpraphant's Royal Thai Government Scholarship.

Phyllis Picklesimer | EurekAlert!
Further information:
http://www.illinois.edu

More articles from Studies and Analyses:

nachricht Study relating to materials testing Detecting damages in non-magnetic steel through magnetism
23.07.2018 | Technische Universität Kaiserslautern

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Lining up surprising behaviors of superconductor with one of the world's strongest magnets

Scientists have discovered that the electrical resistance of a copper-oxide compound depends on the magnetic field in a very unusual way -- a finding that could help direct the search for materials that can perfectly conduct electricity at room temperatur

What happens when really powerful magnets--capable of producing magnetic fields nearly two million times stronger than Earth's--are applied to materials that...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Unraveling the nature of 'whistlers' from space in the lab

15.08.2018 | Physics and Astronomy

Diving robots find Antarctic winter seas exhale surprising amounts of carbon dioxide

15.08.2018 | Earth Sciences

Early opaque universe linked to galaxy scarcity

15.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>