Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Climate variability and conflict risk in East Africa measured by Boulder team

23.10.2012
While a new study led by the University of Colorado Boulder shows the risk of human conflict in East Africa increases somewhat with hotter temperatures and drops a bit with higher precipitation, it concludes that socioeconomic, political and geographic factors play a much more substantial role than climate change.

According to CU-Boulder geography Professor John O'Loughlin, the new CU-Boulder study undertaken with the National Center for Atmospheric Research in Boulder is an attempt to clarify the often-contradictory debate on whether climate change is affecting armed conflicts in Africa.

"We wanted to get beyond the specific idea and hype of climate wars," he said. "The idea was to bring together a team perspective to see if changes in rainfall and temperature led to more conflict in vulnerable areas of East Africa."

The research team examined extensive climate datasets from nine countries in East Africa, including the Horn of Africa, between 1990 and 2009: Burundi, Djibouti, Eritrea, Ethiopia, Kenya, Rwanda, Somalia, Tanzania and Uganda. The team also used a dataset containing more than 16,000 violent conflicts in those countries during that time period, parsing out more specific information on conflict location and under what type of political, social, economic and geographic conditions each incident took place.

The study, which included changes in precipitation and temperature over continuous six-month periods from 1949 to 2009, also showed there was no climate effect on East African conflicts during normal and drier precipitation periods or during periods of average and cooler temperatures, said O'Loughlin.

Moderate increases in temperature reduced the risk of conflict slightly after controlling for the influence of social and political conditions, but very hot temperatures increased the risk of conflict, said O'Loughlin. Unusually wet periods also reduced the risk of conflict, according to the new study.

"The relationship between climate change and conflict in East Africa is incredibly complex and varies hugely by country and time period," he said. "The simplistic arguments we hear on both sides are not accurate, especially those by pessimists who talk about 'climate wars'. Compared to social, economic and political factors, climate factors adding to conflict risk are really quite modest."

The results are being published online Oct. 22 in the Proceedings of the National Academy of Sciences. Co-authors on the study include CU-Boulder Research Associate Frank Witmer and graduate student Andrew Linke as well as three scientists from the National Center for Atmospheric research -- Arlene Laing, Andrew Gettelman and Jimy Dudhia. The National Science Foundation funded the study.

Much of the information on the 16,359 violent events in East Africa from 1990 to 2009 came from the Armed Conflict Location and Event Dataset, or ACLED, directed by Clionadh Raleigh of Trinity College in Dublin. The database covers individual conflicts from 1997 to 2009 in Africa, parts of Asia and Haiti – more than 60,000 violent incidents to date. Raleigh started the data collection while earning her doctorate at CU in 2007 under O'Loughlin.

In addition, more than a dozen CU-Boulder undergraduates spent thousands of hours combing online information sources like LexisNexis -- a corporation that pioneered the electronic accessibility of legal and newspaper documents -- in order to fill in details of individual violent conflicts by East African countries from 1990 to 1997. The student work was funded by the NSF's Research Experiences for Undergraduates program.

The CU students coded each conflict event with very specific data, including geographic location coordinates, dates, people and descriptive classifications. The event information was then aggregated into months and into 100-kilometer grid cells that serve as the units of analysis for quantitative modeling.

Each conflict grid also was coded by socioeconomic and political characteristics like ethnic leadership, distance to an international border, capital city, local population size, well-being as measured by infant mortality, the extent of political rights, presidential election activity, road network density, the health of vegetation and crop conditions.

"The effects of climate variability on conflict risk is different in different countries," O'Loughlin said. "Typically conflicts are very local and quite confined. The effects of climate on conflict in Ethiopia, for example, are different than those in Tanzania or Somalia. The idea that there is a general 'African effect' for conflict is wrong."

The researchers used a variety of complex statistical calculations to assess the role of climate in violent conflict in East Africa, including regression models and a technique to uncover nonlinear influences and decrease "noise," said O'Loughlin, also a faculty member at CU-Boulder's Institute of Behavioral Science.

One component of the methods used by the team extracts predictions of individual instances of conflict from the statistical model and systematically compared them with the actual observations of conflict in the data, "a rigorous validity check," he said.

Catastrophic conflicts like those in the "Great Lakes region" -- Rwanda, Burundi, Uganda and the eastern Democratic Republic of the Congo -- since the 1990s and the war with the Lord's Resistance Army led by terrorist Joseph Kony that has been running since the late 1980s in northern Uganda and neighboring regions are marked with large red swaths on the maps.

Legacies of violence are extremely important for understanding and explaining unrest, he said. "Violence nearby and prior violence in the locality, especially for heavily populated areas, are the strongest predictors of conflict."

Ongoing work is extending the study to all of sub-Saharan Africa since 1980 with a database of 63,000 violent events. Preliminary results from the work confirm the East African climate effects of higher than normal temperatures are increasing conflict risk.

Contact:

John O'Loughlin, 303-492-1619
Johno@colorado.edu
Jim Scott, CU media relations, 303-492-3114
Jim.Scott@colorado.edu

John O'Loughlin | EurekAlert!
Further information:
http://www.colorado.edu

More articles from Studies and Analyses:

nachricht Some brain tumors may respond to immunotherapy, new study suggests
11.12.2018 | Columbia University Irving Medical Center

nachricht Climate change and air pollution damaging health and causing millions of premature deaths
30.11.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Researchers develop method to transfer entire 2D circuits to any smooth surface

What if a sensor sensing a thing could be part of the thing itself? Rice University engineers believe they have a two-dimensional solution to do just that.

Rice engineers led by materials scientists Pulickel Ajayan and Jun Lou have developed a method to make atom-flat sensors that seamlessly integrate with devices...

Im Focus: Three components on one chip

Scientists at the University of Stuttgart and the Karlsruhe Institute of Technology (KIT) succeed in important further development on the way to quantum Computers.

Quantum computers one day should be able to solve certain computing problems much faster than a classical computer. One of the most promising approaches is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

New discoveries predict ability to forecast dementia from single molecule

12.12.2018 | Health and Medicine

CCNY-Yale researchers make shape shifting cell breakthrough

12.12.2018 | Physics and Astronomy

Pain: Perception and motor impulses arise in the brain independently of one another

12.12.2018 | Health and Medicine

VideoLinks
Science & Research
Overview of more VideoLinks >>>