Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Clean 3-way split observed

11.08.2008
Study in the journal Science provides first proof of unlikely phenomenon

In chemistry as in life, threesomes are not known to break up neatly.

And while open-minded thinkers have insisted that clean three-way splits do happen, nobody had actually witnessed one – until now.

A paper in the Aug. 8 issue of Science provides the first hard evidence for the simultaneous break-up of a molecule into three equal parts.

Previous studies of so-called "concerted break-ups" had only suggested their existence, said co-author Anna Krylov, a theoretical chemist at the University of Southern California.

"The experiments by our collaborators (at the University of California, San Diego) demonstrated that this mechanism is present, and our theory explained why and how it happens," she said.

The breakthrough matters for two reasons. Concerted reactions have long been thought to play an important role in organic chemistry, and Krylov's theoretical model offers a framework for better understanding and perhaps manipulating such reactions.

In addition, important phenomena in the atmosphere and in combustion involve three-body reactions. Ozone forms when three molecules come together at exactly the same time – an event no different in theory from a simultaneous split.

Such events are relatively rare: Theory and experiment agree that in most cases a threesome will fall apart in steps, with one bond breaking before the next.

"Why would it happen simultaneously?" Krylov asked rhetorically.

But she and graduate student Vadim Mozhayskiy showed that if the electrons of the sym-triazine molecule are energized in a particular way, the whole flies apart into three identical and equally energetic parts.

Unraveling the mechanism has become possible only through the combined efforts of theoreticians and experimentalists.

Co-author Robert Continetti and his team at UCSD used electrical charges to energize molecules of sym-triazine to their breaking point. By separating the molecules in time and space, the researchers were able to identify the products from individual molecular events.

In some cases, the three parts from a single molecule had exactly the same energy and reached detectors at the same time, indicating that a simultaneous three-way split had occurred.

Even with this discovery, three-body reactions remain largely mysterious, Krylov said.

"The gap in understanding of single-bond and multiple-bond breaking processes is just incredible."

Krylov hopes to promote further work in the field through her iOpenShell Center, a USC-based institute supported by the National Science Foundation and created to foster collaborations between theoretical and experimental chemists.

"The center provides a framework for these interactions," she said.

Carl Marziali | EurekAlert!
Further information:
http://www.usc.edu

More articles from Studies and Analyses:

nachricht Researchers simplify tiny structures' construction drip by drip
12.11.2018 | Princeton University, Engineering School

nachricht Mandibular movement monitoring may help improve oral sleep apnea devices
06.11.2018 | Elsevier

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: UNH scientists help provide first-ever views of elusive energy explosion

Researchers at the University of New Hampshire have captured a difficult-to-view singular event involving "magnetic reconnection"--the process by which sparse particles and energy around Earth collide producing a quick but mighty explosion--in the Earth's magnetotail, the magnetic environment that trails behind the planet.

Magnetic reconnection has remained a bit of a mystery to scientists. They know it exists and have documented the effects that the energy explosions can...

Im Focus: A Chip with Blood Vessels

Biochips have been developed at TU Wien (Vienna), on which tissue can be produced and examined. This allows supplying the tissue with different substances in a very controlled way.

Cultivating human cells in the Petri dish is not a big challenge today. Producing artificial tissue, however, permeated by fine blood vessels, is a much more...

Im Focus: A Leap Into Quantum Technology

Faster and secure data communication: This is the goal of a new joint project involving physicists from the University of Würzburg. The German Federal Ministry of Education and Research funds the project with 14.8 million euro.

In our digital world data security and secure communication are becoming more and more important. Quantum communication is a promising approach to achieve...

Im Focus: Research icebreaker Polarstern begins the Antarctic season

What does it look like below the ice shelf of the calved massive iceberg A68?

On Saturday, 10 November 2018, the research icebreaker Polarstern will leave its homeport of Bremerhaven, bound for Cape Town, South Africa.

Im Focus: Penn engineers develop ultrathin, ultralight 'nanocardboard'

When choosing materials to make something, trade-offs need to be made between a host of properties, such as thickness, stiffness and weight. Depending on the application in question, finding just the right balance is the difference between success and failure

Now, a team of Penn Engineers has demonstrated a new material they call "nanocardboard," an ultrathin equivalent of corrugated paper cardboard. A square...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

“3rd Conference on Laser Polishing – LaP 2018” Attracts International Experts and Users

09.11.2018 | Event News

On the brain’s ability to find the right direction

06.11.2018 | Event News

European Space Talks: Weltraumschrott – eine Gefahr für die Gesellschaft?

23.10.2018 | Event News

 
Latest News

Purdue cancer identity technology makes it easier to find a tumor's 'address'

16.11.2018 | Health and Medicine

Good preparation is half the digestion

16.11.2018 | Life Sciences

Microscope measures muscle weakness

16.11.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>