Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Clean 3-way split observed

11.08.2008
Study in the journal Science provides first proof of unlikely phenomenon

In chemistry as in life, threesomes are not known to break up neatly.

And while open-minded thinkers have insisted that clean three-way splits do happen, nobody had actually witnessed one – until now.

A paper in the Aug. 8 issue of Science provides the first hard evidence for the simultaneous break-up of a molecule into three equal parts.

Previous studies of so-called "concerted break-ups" had only suggested their existence, said co-author Anna Krylov, a theoretical chemist at the University of Southern California.

"The experiments by our collaborators (at the University of California, San Diego) demonstrated that this mechanism is present, and our theory explained why and how it happens," she said.

The breakthrough matters for two reasons. Concerted reactions have long been thought to play an important role in organic chemistry, and Krylov's theoretical model offers a framework for better understanding and perhaps manipulating such reactions.

In addition, important phenomena in the atmosphere and in combustion involve three-body reactions. Ozone forms when three molecules come together at exactly the same time – an event no different in theory from a simultaneous split.

Such events are relatively rare: Theory and experiment agree that in most cases a threesome will fall apart in steps, with one bond breaking before the next.

"Why would it happen simultaneously?" Krylov asked rhetorically.

But she and graduate student Vadim Mozhayskiy showed that if the electrons of the sym-triazine molecule are energized in a particular way, the whole flies apart into three identical and equally energetic parts.

Unraveling the mechanism has become possible only through the combined efforts of theoreticians and experimentalists.

Co-author Robert Continetti and his team at UCSD used electrical charges to energize molecules of sym-triazine to their breaking point. By separating the molecules in time and space, the researchers were able to identify the products from individual molecular events.

In some cases, the three parts from a single molecule had exactly the same energy and reached detectors at the same time, indicating that a simultaneous three-way split had occurred.

Even with this discovery, three-body reactions remain largely mysterious, Krylov said.

"The gap in understanding of single-bond and multiple-bond breaking processes is just incredible."

Krylov hopes to promote further work in the field through her iOpenShell Center, a USC-based institute supported by the National Science Foundation and created to foster collaborations between theoretical and experimental chemists.

"The center provides a framework for these interactions," she said.

Carl Marziali | EurekAlert!
Further information:
http://www.usc.edu

More articles from Studies and Analyses:

nachricht Graphene gives a tremendous boost to future terahertz cameras
16.04.2019 | ICFO-The Institute of Photonic Sciences

nachricht Mount Kilimanjaro: Ecosystems in Global Change
28.03.2019 | Julius-Maximilians-Universität Würzburg

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

A stellar flare 10 times more powerful than anything seen on our sun has burst from an ultracool star almost the same size as Jupiter

  • Coolest and smallest star to produce a superflare found
  • Star is a tenth of the radius of our Sun
  • Researchers led by University of Warwick could only see...

Im Focus: Quantum simulation more stable than expected

A localization phenomenon boosts the accuracy of solving quantum many-body problems with quantum computers which are otherwise challenging for conventional computers. This brings such digital quantum simulation within reach on quantum devices available today.

Quantum computers promise to solve certain computational problems exponentially faster than any classical machine. “A particularly promising application is the...

Im Focus: Largest, fastest array of microscopic 'traffic cops' for optical communications

The technology could revolutionize how information travels through data centers and artificial intelligence networks

Engineers at the University of California, Berkeley have built a new photonic switch that can control the direction of light passing through optical fibers...

Im Focus: A long-distance relationship in femtoseconds

Physicists observe how electron-hole pairs drift apart at ultrafast speed, but still remain strongly bound.

Modern electronics relies on ultrafast charge motion on ever shorter length scales. Physicists from Regensburg and Gothenburg have now succeeded in resolving a...

Im Focus: Researchers 3D print metamaterials with novel optical properties

Engineers create novel optical devices, including a moth eye-inspired omnidirectional microwave antenna

A team of engineers at Tufts University has developed a series of 3D printed metamaterials with unique microwave or optical properties that go beyond what is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

Fraunhofer FHR at the IEEE Radar Conference 2019 in Boston, USA

09.04.2019 | Event News

 
Latest News

New automated biological-sample analysis systems to accelerate disease detection

18.04.2019 | Life Sciences

Explosion on Jupiter-sized star 10 times more powerful than ever seen on our sun

18.04.2019 | Physics and Astronomy

New eDNA technology used to quickly assess coral reefs

18.04.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>