Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Circadian rhythms have profound influence on metabolic output, UCI study reveals

20.03.2012
Findings lead to creation of world’s first liver metabolite data set
By analyzing the hundreds of metabolic products present in the liver, researchers with the UC Irvine Center for Epigenetics & Metabolism have discovered that circadian rhythms — our own body clock — greatly control the production of such key building blocks as amino acids, carbohydrates and lipids.

They identified more than 600 liver-originated metabolites, which are the chemical substances created by metabolism that sustain and promote cell health and growth. Approximately 60 percent of these metabolites were found to be dependent on the endogenous circadian clock — many more than expected, as only about 15 percent of the body’s genes are regulated by it.

Circadian rhythms over 24 hours govern fundamental biological and physiological processes in almost all organisms. They anticipate environmental changes and adapt certain bodily functions to the appropriate time of day. Disruption of these cycles can seriously affect human health.

Center for Epigenetics & Metabolism director Paolo Sassone-Corsi, lead author on the study and one of the world’s preeminent researchers on circadian rhythms, said the liver metabolites reveal how the body clock — through the main circadian gene, CLOCK — orchestrates the interplay between metabolites and signaling proteins in much the same way a conductor leads a symphony.

“Metabolites and signaling proteins — like the horns and strings in an orchestra — need to be perfectly coordinated, and we’ve found that CLOCK provides that direction,” he said.

Since external cues such as day-night lighting patterns and nutrition influence the circadian machinery, metabolites and their relationship to signaling proteins in cells seem to be acutely tied to circadian disruptions. This may help explain, Sassone-Corsi added, some of the primary physiological factors underlying obesity, high cholesterol and metabolic-based diseases like diabetes.

“This interplay has far-reaching implications for human illness and aging, and it is likely vital for proper metabolism,” he said. Study results appear this week in the early online edition of the Proceedings of the National Academy of Sciences.

“By identifying the relationship between metabolites and the body clock, we have taken a first step toward a better understanding of how nutrients interact with our metabolism, giving researchers a new opportunity to spot the optimal times for us to get the fullest benefits from the foods we eat and the medications we take,” added Kristin Eckel-Mahan, a UCI postdoctoral researcher in biological chemistry and study co-author.

Working with Metabolon Inc., Sassone-Corsi and Eckel-Mahan created the first liver metabolome – the full set of metabolites. With this information, they partnered with Pierre Baldi, director of UCI’s Institute for Genomics & Bioinformatics, and his graduate student Vishal Patel to analyze the data and build CircadiOmics, a Web-based data system that provides detailed profiles of the metabolites and related genes in the liver and the underlying networks through which they interact.

“Within CircadiOmics, we were able to integrate this circadian metabolite data with multiple other data sources to generate the first comprehensive map of the liver metabolome and its circadian oscillations and develop regulatory hypotheses that have been confirmed in the laboratory,” said Baldi, Chancellor’s Professor of computer science. “CircadiOmics is being expanded with metabolic data about other tissues and conditions and will be invaluable to further our understanding of the interplay between metabolism and circadian rhythms in healthy and diseased states.”

Robert Mohney and Katie Vignola of Metabolon, in Durham, N.C., contributed to the study, which received National Institutes of Health and National Science Foundation support.

About the University of California, Irvine: Founded in 1965, UCI is a top-ranked university dedicated to research, scholarship and community service. Led by Chancellor Michael Drake since 2005, UCI is among the most dynamic campuses in the University of California system, with nearly 28,000 undergraduate and graduate students, 1,100 faculty and 9,000 staff. Orange County’s second-largest employer, UCI contributes an annual economic impact of $4 billion. For more UCI news, visit www.today.uci.edu.
News Radio: UCI maintains on campus an ISDN line for conducting interviews with its faculty and experts. Use of this line is available for a fee to radio news programs/stations that wish to interview UCI faculty and experts. Use of the ISDN line is subject to availability and approval by the university.

Daniel A. Anderson / University Communications
Paolo Sassone-Corsi is one of the world's leading experts on circadian rhythms.
Media Contact
Tom Vasich
University Communications
949-824-6455
tmvasich@uci.edu

Tom Vasich | EurekAlert!
Further information:
http://www.uci.edu

More articles from Studies and Analyses:

nachricht How to design city streets more fairly
18.05.2020 | Mercator Research Institute on Global Commons and Climate Change (MCC) gGmbH

nachricht Insects: Largest study to date confirms declines on land, but finds recoveries in freshwater – Highly variable trends
24.04.2020 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: New double-contrast technique picks up small tumors on MRI

Early detection of tumors is extremely important in treating cancer. A new technique developed by researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from normal tissue. The work is published May 25 in the journal Nature Nanotechnology.

researchers at the University of California, Davis offers a significant advance in using magnetic resonance imaging to pick out even very small tumors from...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Rolling into the deep

Scientists took a leukocyte as the blueprint and developed a microrobot that has the size, shape and moving capabilities of a white blood cell. Simulating a blood vessel in a laboratory setting, they succeeded in magnetically navigating the ball-shaped microroller through this dynamic and dense environment. The drug-delivery vehicle withstood the simulated blood flow, pushing the developments in targeted drug delivery a step further: inside the body, there is no better access route to all tissues and organs than the circulatory system. A robot that could actually travel through this finely woven web would revolutionize the minimally-invasive treatment of illnesses.

A team of scientists from the Max Planck Institute for Intelligent Systems (MPI-IS) in Stuttgart invented a tiny microrobot that resembles a white blood cell...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Dresden Nexus Conference 2020: Same Time, Virtual Format, Registration Opened

19.05.2020 | Event News

Aachen Machine Tool Colloquium AWK'21 will take place on June 10 and 11, 2021

07.04.2020 | Event News

International Coral Reef Symposium in Bremen Postponed by a Year

06.04.2020 | Event News

 
Latest News

German-British Research project for even more climate protection in the rail industry

28.05.2020 | Transportation and Logistics

A special elemental magic

28.05.2020 | Physics and Astronomy

Skoltech scientists get a sneak peek of a key process in battery 'life'

28.05.2020 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>