Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cedars-Sinai study sheds light on bone marrow stem cell therapy for pancreatic recovery

04.10.2012
Researchers at Cedars-Sinai’s Maxine Dunitz Neurosurgical Institute have found that a blood vessel-building gene boosts the ability of human bone marrow stem cells to sustain pancreatic recovery in a laboratory mouse model of insulin-dependent diabetes.

The findings, published in a PLoS ONE article of the Public Library of Science, offer new insights on mechanisms involved in regeneration of insulin-producing cells and provide new evidence that a diabetic’s own bone marrow one day may be a source of treatment.

Scientists began studying bone marrow-derived stem cells for pancreatic regeneration a decade ago. Recent studies involving several pancreas-related genes and delivery methods – transplantation into the organ or injection into the blood – have shown that bone marrow stem cell therapy could reverse or improve diabetes in some laboratory mice. But little has been known about how stem cells affect beta cells – pancreas cells that produce insulin – or how scientists could promote sustained beta cell renewal and insulin production.

When the Cedars-Sinai researchers modified bone marrow stem cells to express a certain gene (vascular endothelial growth factor, or VEGF), pancreatic recovery was sustained as mouse pancreases were able to generate new beta cells. The VEGF-modified stem cells promoted growth of needed blood vessels and supported activation of genes involved in insulin production. Bone marrow stem cells modified with a different gene, PDX1, which is important in the development and maintenance of beta cells, resulted in temporary but not sustained beta cell recovery.

“Our study is the first to show that VEGF contributes to revascularization and recovery after pancreatic injury. It demonstrates the possible clinical benefits of using bone marrow-derived stem cells, modified to express that gene, for the treatment of insulin-dependent diabetes,” said John S. Yu, MD, professor and vice chair of the Department of Neurosurgery at Cedars-Sinai, senior author of the journal article.

Diabetes was reversed in five of nine mice treated with the injection of VEGF-modified cells, and near-normal blood sugar levels were maintained through the remainder of the six-week study period. The other four mice survived and gained weight, suggesting treatment was beneficial even when it did not prompt complete reversal. Lab studies later confirmed that genetically-modified cells survived and grew in the pancreas and supported the repopulation of blood vessels and beta cells.

Anna Milanesi, MD, PhD, working in Yu’s lab as an endocrinology fellow, is the article’s first author. The researchers cautioned that although this and other related studies help scientists gain a better understanding of the processes and pathways involved in pancreatic regeneration, more research is needed before human clinical trials can begin.

Insulin-dependent diabetes occurs when beta cells of the pancreas fail to produce insulin, a hormone that regulates sugar in the blood. Patients must take insulin injections or consider transplantation of a whole pancreas or parts of the pancreas that make insulin, but transplantation carries the risk of cell rejection.

PLoS ONE: “Beta-cell Regeneration Mediated by Human Bone Marrow Mesenchymal Stem Cells.”

VideoLink ReadyCam camera available, capable of instantly transmitting broadcast quality HD video directly to any network around the word.

Sandy Van | Cedars-Sinai News
Further information:
http://www.cedars-sinai.edu

More articles from Studies and Analyses:

nachricht When a fish becomes fluid
17.12.2018 | Institute of Science and Technology Austria

nachricht Some brain tumors may respond to immunotherapy, new study suggests
11.12.2018 | Columbia University Irving Medical Center

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Data storage using individual molecules

Researchers from the University of Basel have reported a new method that allows the physical state of just a few atoms or molecules within a network to be controlled. It is based on the spontaneous self-organization of molecules into extensive networks with pores about one nanometer in size. In the journal ‘small’, the physicists reported on their investigations, which could be of particular importance for the development of new storage devices.

Around the world, researchers are attempting to shrink data storage devices to achieve as large a storage capacity in as small a space as possible. In almost...

Im Focus: Data use draining your battery? Tiny device to speed up memory while also saving power

The more objects we make "smart," from watches to entire buildings, the greater the need for these devices to store and retrieve massive amounts of data quickly without consuming too much power.

Millions of new memory cells could be part of a computer chip and provide that speed and energy savings, thanks to the discovery of a previously unobserved...

Im Focus: An energy-efficient way to stay warm: Sew high-tech heating patches to your clothes

Personal patches could reduce energy waste in buildings, Rutgers-led study says

What if, instead of turning up the thermostat, you could warm up with high-tech, flexible patches sewn into your clothes - while significantly reducing your...

Im Focus: Lethal combination: Drug cocktail turns off the juice to cancer cells

A widely used diabetes medication combined with an antihypertensive drug specifically inhibits tumor growth – this was discovered by researchers from the University of Basel’s Biozentrum two years ago. In a follow-up study, recently published in “Cell Reports”, the scientists report that this drug cocktail induces cancer cell death by switching off their energy supply.

The widely used anti-diabetes drug metformin not only reduces blood sugar but also has an anti-cancer effect. However, the metformin dose commonly used in the...

Im Focus: New Foldable Drone Flies through Narrow Holes in Rescue Missions

A research team from the University of Zurich has developed a new drone that can retract its propeller arms in flight and make itself small to fit through narrow gaps and holes. This is particularly useful when searching for victims of natural disasters.

Inspecting a damaged building after an earthquake or during a fire is exactly the kind of job that human rescuers would like drones to do for them. A flying...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

ICTM Conference 2019: Digitization emerges as an engineering trend for turbomachinery construction

12.12.2018 | Event News

New Plastics Economy Investor Forum - Meeting Point for Innovations

10.12.2018 | Event News

EGU 2019 meeting: Media registration now open

06.12.2018 | Event News

 
Latest News

Pressure tuned magnetism paves the way for novel electronic devices

18.12.2018 | Materials Sciences

New type of low-energy nanolaser that shines in all directions

18.12.2018 | Physics and Astronomy

NASA research reveals Saturn is losing its rings at 'worst-case-scenario' rate

18.12.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>