Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Caterpillar Gets More From Its Food When Predator Is on the Prowl

13.07.2012
Animals that choose to eat in the presence of a predator run the risk of being eaten themselves, so they often go into a defensive mode and pay a physical penalty for the lack of nutrients.

But that's not so for the crop pest hornworm caterpillar, a study shows.

While other animals increase metabolism and stop growing or developing during a defensive period, hornworm caterpillars slow or stop eating but actually keep up their weight and develop a little faster in the short term. Ian Kaplan, a Purdue University assistant professor of entomology; Jennifer S. Thaler, an associate professor of entomology at Cornell University; and Scott H. McArt, a graduate student at Cornell, noticed that hornworm caterpillars ate 30 percent to 40 percent less when threatened by stink bugs but weighed the same as their non-threatened counterparts.

"It was a little puzzling. If you're going to shut down, there should be a cost associated with that," said Kaplan, who studied the caterpillars as a postdoctoral researcher at Cornell. "We usually think that you can either grow really fast and not defend yourself, or defend yourself but pay a physical penalty. That wasn't happening here."

Threatened hornworm caterpillars adapt to increase the efficiency by which they convert food into energy. They also increase the amount of nitrogen they extract from their food and their bodies' lipid content. In the first three days of the study, the caterpillars weighed the same and reached the next developmental stage faster than caterpillars eating in safety.

Over the long term, however, their body compositions change and their ability to turn food into energy is reduced in later developmental stages. The findings, published in the Proceedings of the National Academy of Science, reveal that hornworm caterpillars are the first insect species shown to delay the physical penalties associated with protecting themselves from predators.

Hornworm caterpillars eat tomato, tobacco, pepper and other crops. Kaplan said understanding their physiology may lead to better ways to control the pests.

Kaplan said the scientists found an interesting way to work around a major roadblock in studying the physiological changes in the caterpillars exposed to predators. They "disarmed" the predators.

Stink bugs normally would use their mouthparts to stab the caterpillar and suck out its internal parts. But the scientists removed part of the stink bugs' mouthparts, allowing them to hunt but not eat.

"We created a predator that couldn't kill its prey," Kaplan said. "It was a way to be able to expose the prey to a risk and still be able to study the physiological responses of the prey."

The scientists also wondered whether the physiological responses were due to the presence of the predator or simply from a lack of food. To test, they removed food from some caterpillars that had eaten as much as a caterpillar facing a predator. Other caterpillars were given food off and on until they had eaten the same amount as one facing a predator to better mimic those same feeding patterns.

In both cases, the caterpillars weighed less and did not exhibit the same physiological changes as their hunted counterparts.

"This is a predator response rather than a physiological response due to a lack of food," Kaplan said.

The U.S. Department of Agriculture funded the research.

Writer: Brian Wallheimer, 765-496-2050, bwallhei@purdue.edu

Source: Ian Kaplan, 765-494-7207, ikaplan@purdue.edu

ABSTRACT

Compensatory Mechanisms for Ameliorating the Fundamental Trade-off Between Predator Avoidance and Foraging

Jennifer S. Thaler, Scott H. McArt, and Ian Kaplan

Most organisms face the problem of foraging and maintaining growth while avoiding predators. Typical animal responses to predator exposure include reduced feeding, elevated metabolism and altered development rate, all of which can be beneficial in the presence of predators but detrimental in their absence. How then do animals balance growth and predator avoidance? In a series of field and greenhouse experiments, we document that the tobacco hornworm caterpillar, Manduca sexta, reduced feeding by 30–40% owing to the risk of predation by stinkbugs, but developed more rapidly and gained the same mass as unthreatened caterpillars. Assimilation efficiency, extraction of nitrogen from food, and percent body lipid content all increased during the initial phase (1-3 d) of predation risk, indicating that enhanced nutritional physiology allows caterpillars to compensate when threatened. However, we report physiological costs of predation risk, including altered body composition (decreased glycogen) and reductions in assimilation efficiency later in development. Our findings indicate that hornworm caterpillars use temporally dynamic compensatory mechanisms that ameliorate the trade-off between predator avoidance and growth in the short term, deferring costs to a period when they are less vulnerable to predation.

Brian Wallheimer | Newswise Science News
Further information:
http://www.purdue.edu

More articles from Studies and Analyses:

nachricht ECG procedure indicates whether an implantable defibrillator will extend a patient's life
02.09.2019 | Technische Universität München

nachricht Fracking prompts global spike in atmospheric methane
14.08.2019 | European Geosciences Union

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Im Focus: Modular OLED light strips

At the International Symposium on Automotive Lighting 2019 (ISAL) in Darmstadt from September 23 to 25, 2019, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, a provider of research and development services in the field of organic electronics, will present OLED light strips of any length with additional functionalities for the first time at booth no. 37.

Almost everyone is familiar with light strips for interior design. LED strips are available by the metre in DIY stores around the corner and are just as often...

Im Focus: Tomorrow´s coolants of choice

Scientists assess the potential of magnetic-cooling materials

Later during this century, around 2060, a paradigm shift in global energy consumption is expected: we will spend more energy for cooling than for heating....

Im Focus: The working of a molecular string phone

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Potsdam (both in Germany) and the University of Toronto (Canada) have pieced together a detailed time-lapse movie revealing all the major steps during the catalytic cycle of an enzyme. Surprisingly, the communication between the protein units is accomplished via a water-network akin to a string telephone. This communication is aligned with a ‘breathing’ motion, that is the expansion and contraction of the protein.

This time-lapse sequence of structures reveals dynamic motions as a fundamental element in the molecular foundations of biology.

Im Focus: Milestones on the Way to the Nuclear Clock

Two research teams have succeeded simultaneously in measuring the long-sought Thorium nuclear transition, which enables extremely precise nuclear clocks. TU Wien (Vienna) is part of both teams.

If you want to build the most accurate clock in the world, you need something that "ticks" very fast and extremely precise. In an atomic clock, electrons are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Society 5.0: putting humans at the heart of digitalisation

10.09.2019 | Event News

Interspeech 2019 conference: Alexa and Siri in Graz

04.09.2019 | Event News

AI for Laser Technology Conference: optimizing the use of lasers with artificial intelligence

29.08.2019 | Event News

 
Latest News

Novel mechanism of electron scattering in graphene-like 2D materials

17.09.2019 | Materials Sciences

Novel anti-cancer nanomedicine for efficient chemotherapy

17.09.2019 | Health and Medicine

Fungicides as an underestimated hazard for freshwater organisms

17.09.2019 | Ecology, The Environment and Conservation

VideoLinks
Science & Research
Overview of more VideoLinks >>>