Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Catalyst mystery unlocked

20.08.2008
New model brings USC chemists closer to 'holy grail' of catalyst design

Different keys are not supposed to fit the same lock, but in biological systems multiple versions of a catalyst all make a reaction go, according to a new study that explains the phenomenon.

Scheduled for online publication in PNAS Early Edition sometime after Aug. 18, the study challenges entrenched ideas about the workings of catalysts.

The study also suggests a method for designing new catalysts.

Catalysts are molecules that speed up chemical reactions without participating in them. Thousands of industrial and biological processes rely on catalysts. In the human body, enzymes catalyze almost every reaction.

"The Holy Grail of enzyme catalysis and the ultimate manifestation of understanding of this process is the ability to design enzymes," said senior author Arieh Warshel, professor of chemistry at USC College.

He listed drug production, environmental chemistry and bioremediation as areas that could be revolutionized by custom-designed enzymes.

In the PNAS study, Warshel described a computational model that both explains a key aspect of catalyst function and suggests a design strategy.

Since the early days of catalyst chemistry, scientists had championed the "lock and key" model, which held that a catalyst worked by exquisitely surrounding and matching the reacting system (the substrate).

Warshel's group has published several papers in support of an alternate theory based on electrical attraction. According to the group, a perfect physical fit between catalyst and substrate is not necessary.

"What really fits is the electrostatic interaction between the enzyme active site to the substrate charges at the so-called transition state, where the bonds are halfway to being broken," Warshel said.

If Warshel is correct, catalyst and substrate would be less like lock and key, and more like two magnets: As long the opposite poles could get close to each other, they would bind.

Warshel's model reproduced new experimental data showing that a natural enzyme and its engineered, structurally different counterpart both have the same catalytic power, despite being very different from each other.

The engineered enzyme, made by co-author Donald Hilvert of ETH in Zurich, Switzerland, displays less distinct folding than the natural enzyme. It also changes shape very rapidly.

Warshel's model shows that the engineered enzyme takes the shape of many keys, with all fitting electrostatically in the same lock. This should offer a new option for enzyme design.

Carl Marziali | EurekAlert!
Further information:
http://www.usc.edu

Further reports about: PNAS catalyst design enzyme enzymes catalyze holy grail human body

More articles from Studies and Analyses:

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Oxygen loss in the coastal Baltic Sea is “unprecedentedly severe”
05.07.2018 | European Geosciences Union

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Microscopic trampoline may help create networks of quantum computers

17.07.2018 | Information Technology

In borophene, boundaries are no barrier

17.07.2018 | Materials Sciences

The role of Sodium for the Enhancement of Solar Cells

17.07.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>