Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

All cancer cells are not created equal

16.05.2012
Some cell types control continued tumor growth, others prepare the way for metastasis

A study from Massachusetts General Hospital (MGH) researchers suggests that specific populations of tumor cells have different roles in the process by which tumors make new copies of themselves and grow.

In their report in the May 15 issue of Cancer Cell, researchers identify a tumor-propagating cell required for the growth of a pediatric muscle tumor in a zebrafish model and also show that another, more-differentiated tumor cell must first travel to sites of new tumor growth to prepare an environment that supports metastatic growth.

"Most investigators have thought that tumor-propagating cells – what are sometimes called cancer stem cells – must be the first colonizing cells that travel from the primary tumor to start the process of local invasion and metastasis, but in this model, this is simply not the case," says David Langenau, PhD, of the MGH Department of Pathology and Center for Cancer Research, who led the study.

"Instead, the colonizing cells lack the ability to divide and instead prime newly infiltrated regions for the eventual recruitment of slow-moving cancer stem cells. It will be important to test how broadly this phenomenon is found in a diversity of animal and human cancers."

Langenau's team has long been using zebrafish to study rhabdomyosarcoma (RMS), an aggressive pediatric cancer. In embryonic zebrafish, RMS can develop within 10 days, and since the tiny fish are transparent at that stage, fluorescent markers attached to particular cellular proteins can easily be imaged. The current study used these properties to monitor how specific populations of tumor cells develop and their role in initiating new tumor growth.

Previous research from the MGH team had discovered that RMS cells expressing marker proteins also seen on muscle progenitor cells had significantly more tumor-propagating potential than did other tumor cells. Fluorescently labeling proteins associated with different stages of cellular differentiation revealed distinct populations of RMS cells in the zebrafish model. Cells expressing the progenitor cell marker myf5, were labeled green, and those expressing myogenin, a marker of mature muscle cells, were labeled red.

In a series of experiments, the research team confirmed that myf5-expressing RMS cells had powerful tumor-propagating potential, but the ability to visualize how tumor cells move in living fish produced a surprising observation. While myf5-expressing cells largely remained within the primary tumor itself, myogenin-expressing RMS cells easily moved out from the tumor, entering the vascular system and passing through usually impenetrable layers of collagen. Only after the more-differentiated but non-proliferative myogenin-expressing cells had colonized an area did the myf5-expressing tumor-propagating cells appear and start the growth a new tumor. Imaging the labeled tumor cells also revealed that different cellular populations tended to cluster in different areas of later-stage tumors.

"Our direct in-vivo imaging studies are the first to suggest such diverse cellular functions in solid tumors, based on differentiation and the propensity for self-renewal," says Myron Ignatius, PhD, of MGH Pathology and Center for Cancer Research, the study's first author. "I think we will find that this kind of division of labor is a common theme in cancer, especially given that the vast majority of cells within a tumor are not tumor-propagating cells. We suspect there will be molecularly defined populations that make niches for tumor-propagating cells, secrete factors to recruit vasculature and create boundaries to suppress immune cell invasion."

Langenau adds, "Division of labor is a new and emerging concept in cancer research that we hope will lead to new targets for rationally designed therapies. In rhabdomyosarcoma it will be important to target both the tumor-propagating cells and the highly migratory colonizing cells for distruction – a major focus of ongoing studies in our group." Langenau is an assistant professor of Genetics at Harvard Medical School and a principal faculty mmber at the Harvard Stem Cell Institute.

Additional co-authors author of the Cancer Cell article are Eleanor Chen, Adam Fuller, Ines Tenente Rayn Clagg, Sali Liu, Jessica Blackburn, MGH Pathology and Center for Cancer Research; Andrew Rosenberg, and Petur Neilsen, MGH Pathology; Natalie Elpek and Thorsten Mempel, MGH Center for Immunology and Inflammatory Diseases; and Corinne Linardic, Duke University Medical Center. The study was supported by grants from the National Institute of Health, the Alex's Lemonade Stand Foundation, the Sarcoma Foundation of America, the American Cancer Society and the Harvard Stem Cell Institute.

Massachusetts General Hospital (www.massgeneral.org), founded in 1811, is the original and largest teaching hospital of Harvard Medical School. The MGH conducts the largest hospital-based research program in the United States, with an annual research budget of more than $750 million and major research centers in AIDS, cardiovascular research, cancer, computational and integrative biology, cutaneous biology, human genetics, medical imaging, neurodegenerative disorders, regenerative medicine, reproductive biology, systems biology, transplantation biology and photomedicine.

Sue McGreevey | EurekAlert!
Further information:
http://www.massgeneral.org

More articles from Studies and Analyses:

nachricht Self-organising system enables motile cells to form complex search pattern
07.05.2019 | Westfälische Wilhelms-Universität Münster

nachricht Mouse studies show minimally invasive route can accurately administer drugs to brain
02.05.2019 | Johns Hopkins Medicine

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New studies increase confidence in NASA's measure of Earth's temperature

A new assessment of NASA's record of global temperatures revealed that the agency's estimate of Earth's long-term temperature rise in recent decades is accurate to within less than a tenth of a degree Fahrenheit, providing confidence that past and future research is correctly capturing rising surface temperatures.

The most complete assessment ever of statistical uncertainty within the GISS Surface Temperature Analysis (GISTEMP) data product shows that the annual values...

Im Focus: The geometry of an electron determined for the first time

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or...

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

On Mars, sands shift to a different drum

24.05.2019 | Physics and Astronomy

Piedmont Atlanta first in Georgia to offer new minimally invasive treatment for emphysema

24.05.2019 | Medical Engineering

Chemical juggling with three particles

24.05.2019 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>