Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why caffeine can reduce fertility in women

26.05.2011
Caffeine reduces muscle activity in the Fallopian tubes that carry eggs from a woman's ovaries to her womb. "Our experiments were conducted in mice, but this finding goes a long way towards explaining why drinking caffeinated drinks can reduce a woman's chance of becoming pregnant," says Professor Sean Ward from the University of Nevada School of Medicine, Reno, USA. Ward's study is published today in the British Journal of Pharmacology.

Human eggs are microscopically small, but need to travel to a woman's womb if she is going to have a successful pregnancy. Although the process is essential for a successful pregnancy, scientists know little about how eggs move through the muscular Fallopian tubes. It was generally assumed that tiny hair-like projections, called cilia, in the lining of the tubes, waft eggs along assisted by muscle contractions in the tube walls.

By studying tubes from mice, Professor Ward and his team discovered that caffeine stops the actions of specialised pacemaker cells in the wall of the tubes. These cells coordinate tube contractions so that when they are inhibited, eggs can't move down the tubes. In fact these muscle contractions play a bigger role than the beating cilia in moving the egg towards the womb. "This provides an intriguing explanation as to why women with high caffeine consumption often take longer to conceive than women who do not consume caffeine," says Professor Ward.

Discovering the link between caffeine consumption and reduced fertility has benefits. "As well as potentially helping women who are finding it difficult to get pregnant, a better understanding of the way Fallopian tubes work will help doctors treat pelvic inflammation and sexually-transmitted disease more successfully," says Professor Ward. It could also increase our understanding of what causes ectopic pregnancy, an extremely painful and potentially life-threatening situation in which embryos get stuck and start developing inside a woman's Fallopian tube.

Amy Molnar | EurekAlert!
Further information:
http://www.wiley.com

More articles from Studies and Analyses:

nachricht Study relating to materials testing Detecting damages in non-magnetic steel through magnetism
23.07.2018 | Technische Universität Kaiserslautern

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

20.08.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>