Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

BUSM Study Demonstrates Tomosynthesis Effective in Diagnosing Knee Osteoarthritis

22.03.2012
A recent study done by researchers at Boston University School of Medicine (BUSM) shows that tomosynthesis may be more beneficial in diagnosing knee osteoarthritis than X-ray imaging.
In the study, which is published online in the journal Radiology, tomosynthesis detected more osteophytes (abnormal bony spurs) and subchondral cysts (small collection of fluid within the bone) in the knee joint than conventional X-ray imaging.

Daichi Hayashi, MD, PhD, research instructor at the Quantitative Imaging Center in the department of radiology at BUSM, is the lead author of the study. The research was led by Ali Guermazi, MD, PhD, professor of radiology at BUSM and chief of musculoskeletal radiology at Boston Medical Center.

Osteoarthritis, the most common form of arthritis, is characterized by a degeneration of cartilage and the underlying bone and other soft tissues in the joints, leading to pain and stiffness. According to the Centers for Disease Control and Prevention, osteoarthritis is the leading cause of disability in the United States, affecting approximately 26.9 million Americans.

Osteoarthritis can be diagnosed clinically, from symptoms and physical examinations, or by taking and evaluating images. While X-ray imaging has commonly been used to diagnose the disease, recent research has shown that it is less accurate than Magnetic Resonance Imaging (MRI). However, while MRI provides higher-quality images, it is much more expensive than X-rays and cannot be routinely used in daily clinical practice. CT scan is another imaging technique that can provide detailed images of the joint, but it exposes patients to higher doses of radiation than X-rays.

“Despite the known limitation of X-ray imaging, it is widely used to diagnosis knee osteoarthritis, both in terms of daily clinical practice and also for clinical research studies,” said Hayashi.

Given the limitations, Hayashi and the team lead by Guermazi explored tomosynthesis to image the knee joint and determine its accuracy in detecting signs of osteoarthritis in the knee. Tomosynthesis uses an X-ray beam to take tomographic images (that is, images in slices similar to those from CT scans), which allows for better visualization than from a single X-ray image. The radiation exposure from tomosynthesis is similar to the traditional X-ray and much lower than CT. Also, it takes seconds to obtain images using tomosynthesis and can be done while a person is standing up.

The team examined 40 participants (80 knees), all over the age of 40, who were recruited irrespective of knee pain or an X-ray diagnosis of osteoarthritis. The knees were imaged using X-ray, tomosynthesis and MRI. The presence of osteophytes and subchondral cysts were recorded, and knee pain was assessed for each participant based on a questionnaire.

The results demonstrated that tomosynthesis, compared to X-ray, improves the detection of osteophytes in the knee joint in patients with or without osteoarthritis. The sensitivity for detecting osteophytes increased by five to 29 percent with tomosynthesis compared to X-ray. The sensitivity for detection of subchondral cysts in the knee joint increased by 11 to 50 percent with tomosynthesis compared to X-ray. The study also concludes that subjects with tomosynthesis-detected osteophytes and cysts were more likely to feel pain than those without the lesions.

“This study shows that the images obtained through tomosynthesis are significantly better than those from X-rays and could potentially be a better diagnostic tool for knee osteoarthritis in patients with knee pain,” said Hayashi. “While tomosynthesis has not been widely used in imaging of bones and joints to date, the results of our study show that using tomosynthesis to detect knee osteoarthritis can be effective.”

This study was funded through a research grant to Dr. Guermazi from GE Healthcare.

Jenny Eriksen Leary | EurekAlert!
Further information:
http://www.bmc.org

More articles from Studies and Analyses:

nachricht Self-organising system enables motile cells to form complex search pattern
07.05.2019 | Westfälische Wilhelms-Universität Münster

nachricht Mouse studies show minimally invasive route can accurately administer drugs to brain
02.05.2019 | Johns Hopkins Medicine

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The geometry of an electron determined for the first time

Physicists at the University of Basel are able to show for the first time how a single electron looks in an artificial atom. A newly developed method enables them to show the probability of an electron being present in a space. This allows improved control of electron spins, which could serve as the smallest information unit in a future quantum computer. The experiments were published in Physical Review Letters and the related theory in Physical Review B.

The spin of an electron is a promising candidate for use as the smallest information unit (qubit) of a quantum computer. Controlling and switching this spin or...

Im Focus: Self-repairing batteries

UTokyo engineers develop a way to create high-capacity long-life batteries

Engineers at the University of Tokyo continually pioneer new ways to improve battery technology. Professor Atsuo Yamada and his team recently developed a...

Im Focus: Quantum Cloud Computing with Self-Check

With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics. The research groups led by Rainer Blatt and Peter Zoller report in the journal Nature how they simulated particle physics phenomena on 20 quantum bits and how the quantum simulator self-verified the result for the first time.

Many scientists are currently working on investigating how quantum advantage can be exploited on hardware already available today. Three years ago, physicists...

Im Focus: Accelerating quantum technologies with materials processing at the atomic scale

'Quantum technologies' utilise the unique phenomena of quantum superposition and entanglement to encode and process information, with potentially profound benefits to a wide range of information technologies from communications to sensing and computing.

However a major challenge in developing these technologies is that the quantum phenomena are very fragile, and only a handful of physical systems have been...

Im Focus: A step towards probabilistic computing

Working group led by physicist Professor Ulrich Nowak at the University of Konstanz, in collaboration with a team of physicists from Johannes Gutenberg University Mainz, demonstrates how skyrmions can be used for the computer concepts of the future

When it comes to performing a calculation destined to arrive at an exact result, humans are hopelessly inferior to the computer. In other areas, humans are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

SEMANTiCS 2019 brings together industry leaders and data scientists in Karlsruhe

29.04.2019 | Event News

Revered mathematicians and computer scientists converge with 200 young researchers in Heidelberg!

17.04.2019 | Event News

First dust conference in the Central Asian part of the earth’s dust belt

15.04.2019 | Event News

 
Latest News

Plumbene, graphene's latest cousin, realized on the 'nano water cube'

23.05.2019 | Materials Sciences

New flatland material: Physicists obtain quasi-2D gold

23.05.2019 | Materials Sciences

New Boost for ToCoTronics

23.05.2019 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>