Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Clean air in Iowa

14.05.2014

University of Iowa study reports air quality statewide falls within federal cleanliness standards

With warmer weather, it's time to get outdoors. And now you can breathe easy about it: A new study from the University of Iowa reports Iowa's air quality falls within government guidelines for cleanliness.


University of Iowa researchers report that Iowa falls within federal air quality standards for fine particulates. The report is based on analyzing data, on an annual average, over three years at rural and urban locations in the state. Illustration by Sondra Cue.

The UI researchers analyzed air quality and pollution data compiled by state and county agencies over nearly three years at five sites spread statewide—urban areas Cedar Rapids, Davenport and Des Moines and rural locations in Montgomery county in southwest Iowa and Van Buren county in the southeast. The result: The air, as measured by a class of fine particulate pollutants at those locations and based on an annual average, fell within federal cleanliness guidelines.

The study also is the first to examine differences in air quality and pollution sources between urban and rural areas in the Midwest. This is an important distinction, because a higher percentage of the population in the Midwest lives in rural areas, when compared with other regions in the U.S., the researchers note. In Iowa, 44 percent of residents live in the country.

“In general, our air in Iowa is pretty good,” says Betsy Stone, assistant professor in chemistry at the UI and lead author of the study, published in the Royal Society of Chemistry journal Environmental Science: Processes & Impacts.

The researchers analyzed data gathered from April 2009 to December 2012 from monitors run by the Iowa Department of Natural Resources and the health departments in Linn and Polk counties. Using that information, the researchers found that fine particle levels during that time span at the urban and rural locations were below the newest yearly-average National Ambient Air Quality Standards, set by the U.S. Environmental Protection Agency.

Stone and Shuvashish Kundu, a former post-doctoral researcher at the UI now at Hokkaido University in Japan and the paper’s first author, looked at particulates with an airborne diameter of roughly 2.5 microns. These particles come from various sources, ranging from campfires and leaf burning, to vehicle exhaust and power-plant emissions. No matter the source, they pose a health threat to people, because they are small enough to bypass the respiratory system’s natural defenses and get lodged in the deepest recesses of the lungs.

“Respirable particles are a danger to human health, and acute exposure have been linked to respiratory illness and even death," Stone notes.

The EPA regulates the particulates, known as PM2.5. The agency also regulates coarser particles, those with an airborne diameter of roughly 10 microns, which were not part of this study. In 2012, the EPA lowered the primary standard for the annual average concentration of PM2.5 particulates considered safe, as more information became known about their prevalence and danger to human health.

In general, the UI researchers found that the concentration of PM2.5 particulates was higher at the urban monitoring sites than the rural locations. This was true especially for particles associated with exhaust from gasoline- and diesel-powered vehicles. Diesel combustion, in particular, was 230 percent higher in urban areas than rural, the study found.

The rural sites had slightly higher concentrations of secondary nitrates—which form by chemical reactions in the atmosphere and are most prevalent in wintertime—according to the data.

Another particulate, secondary sulfates (formed in the atmosphere from emissions, such as those from coal-fired power plants), had the highest concentration (between 30 and 44 percent) of all pollutants at urban and rural sites, with readings being mostly uniform across locations.

“In general, we see most (urban and rural monitoring) sites have comparable levels of sulfates,” notes Stone, a native Iowan. “That suggests it’s a regional phenomenon affecting all of Iowa.”

Other pollution impacts, such as particulates from cars and diesel vehicles, were more local, which is what the researchers expected.

Of the monitoring sites, Davenport had the highest PM2.5 concentration—although within federal air-quality standards—with the highest iron, zinc, and lead concentrations, the data showed. The cause appears to be attributable mostly to localized industrial activity and could also be accentuated by vehicular exhaust and diesel-powered barge traffic on the Mississippi River, the researchers say.

While Iowa’s air is generally clean, the state could use the study’s findings to make it even healthier. “I would say this tells us quite a lot about the sources of air pollution,” Stone says. "Yet, I don't want to send the message that we shouldn't be concerned about air quality in Iowa. Even low levels of pollutants can have negative health impacts."

The National Institutes of Health (project number: 5P30ES005605-24) funded the research, through a seed grant obtained by the Environmental Health Sciences Research Center in the UI College of Public Health.

Contacts

Betsy Stone, Chemistry, 319- 384-1863
Richard Lewis, University Communication and Marketing, 319-384-0012

Richard Lewis | Eurek Alert!
Further information:
http://now.uiowa.edu/2014/04/breathe-easy-iowa-your-air-relatively-healthy

Further reports about: Air Quality Diesel EPA Environmental Protection activity atmosphere exposure healthy

More articles from Studies and Analyses:

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Oxygen loss in the coastal Baltic Sea is “unprecedentedly severe”
05.07.2018 | European Geosciences Union

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Global study of world's beaches shows threat to protected areas

19.07.2018 | Earth Sciences

New creepy, crawly search and rescue robot developed at Ben-Gurion U

19.07.2018 | Power and Electrical Engineering

Metal too 'gummy' to cut? Draw on it with a Sharpie or glue stick, science says

19.07.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>