Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Our brains are more like birds' than we thought

05.07.2010
UC San Diego researchers find structural similarities in the neocortices of humans and chickens

For more than a century, neuroscientists believed that the brains of humans and other mammals differed from the brains of other animals, such as birds (and so were presumably better). This belief was based, in part, upon the readily evident physical structure of the neocortex, the region of the brain responsible for complex cognitive behaviors.

A new study, however, by researchers at the University of California, San Diego School of Medicine finds that a comparable region in the brains of chickens concerned with analyzing auditory inputs is constructed similarly to that of mammals.

"And so ends, perhaps, this claim of mammalian uniqueness," said Harvey J. Karten, MD, professor in the Department of Neurosciences at UCSD's School of Medicine, and lead author of the study, published this week in the Proceedings of the National Academy of Sciences Online Early Edition.

Generally speaking, the brains of mammals have long been presumed to be more highly evolved and developed than the brains of other animals, in part based upon the distinctive structure of the mammalian forebrain and neocortex – a part of the brain's outer layer where complex cognitive functions are centered.

Specifically, the mammalian neocortex features layers of cells (lamination) connected by radially arrayed columns of other cells, forming functional modules characterized by neuronal types and specific connections. Early studies of homologous regions in nonmammalian brains had found no similar arrangement, leading to the presumption that neocortical cells and circuits in mammals were singular in nature.

For 40 years, Karten and colleagues have worked to upend this thinking. In the latest research, they used modern, sophisticated imaging technologies, including a highly sensitive tracer, to map a region of the chicken brain (part of the telencephalon) that is similar to the mammalian auditory cortex. Both regions handle listening duties. They discovered that the avian cortical region was also composed of laminated layers of cells linked by narrow, radial columns of different types of cells with extensive interconnections that form microcircuits that are virtually identical to those found in the mammalian cortex.

The findings indicate that laminar and columnar properties of the neocortex are not unique to mammals, and may in fact have evolved from cells and circuits in much more ancient vertebrates.

"The belief that cortical microcircuitry was a unique property of mammalian brains was largely based on the lack of apparent lamination in other species, and the widespread notion that non-mammalian vertebrates were not capable of performing complex cognitive and analytic processing of sensory information like that associated with the neocortex of mammals," said Karten.

"Animals like birds were viewed as lovely automata capable only of stereotyped activity."

But this kind of thinking presented a serious problem for neurobiologists trying to figure out the evolutionary origins of the mammalian cortex, he said. Namely, where did all of that complex circuitry come from and when did it first evolve?

Karten's research supplies the beginnings of an answer: From an ancestor common to both mammals and birds that dates back at least 300 million years.

The new research has contemporary, practical import as well, said Karten. The similarity between mammalian and avian cortices adds support to the utility of birds as suitable animal models in diverse brain studies.

"Studies indicate that the computational microcircuits underlying complex behaviors are common to many vertebrates," Karten said. "This work supports the growing recognition of the stability of circuits during evolution and the role of the genome in producing stable patterns. The question may now shift from the origins of the mammalian cortex to asking about the changes that occur in the final patterning of the cortex during development."

The research was supported by grants from the National Institute of Neurological Disorders and Stroke, the National Institute of Mental Health and the National Institute on Deafness and Other Communications Disorders.

Additional contributors include Yuan Wang of UCSD Department of Neurosciences, the Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle and Agnieszka Brzozowska-Prechtl of the UCSD Department of Neurosciences.

Scott LaFee | EurekAlert!
Further information:
http://www.ucsd.edu

Further reports about: Medicine Neurosciences UCSD cognitive function disorders mammalian brains

More articles from Studies and Analyses:

nachricht Study relating to materials testing Detecting damages in non-magnetic steel through magnetism
23.07.2018 | Technische Universität Kaiserslautern

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: It’s All in the Mix: Jülich Researchers are Developing Fast-Charging Solid-State Batteries

There are currently great hopes for solid-state batteries. They contain no liquid parts that could leak or catch fire. For this reason, they do not require cooling and are considered to be much safer, more reliable, and longer lasting than traditional lithium-ion batteries. Jülich scientists have now introduced a new concept that allows currents up to ten times greater during charging and discharging than previously described in the literature. The improvement was achieved by a “clever” choice of materials with a focus on consistently good compatibility. All components were made from phosphate compounds, which are well matched both chemically and mechanically.

The low current is considered one of the biggest hurdles in the development of solid-state batteries. It is the reason why the batteries take a relatively long...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

LaserForum 2018 deals with 3D production of components

17.08.2018 | Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

 
Latest News

Quantum bugs, meet your new swatter

20.08.2018 | Information Technology

A novel synthetic antibody enables conditional “protein knockdown” in vertebrates

20.08.2018 | Life Sciences

Metamolds: Molding a mold

20.08.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>