Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Brain study could lead to new understanding of depression

25.08.2008
Brain scientists have moved a step closer to understanding why some people may be more prone to depression than others.

Dr Roland Zahn, a clinical neuroscientist in The University of Manchester’s School of Psychological Sciences, and his colleagues have identified how the brain links knowledge about social behaviour with moral sentiments, such as pride and guilt.

The study, carried out at the National Institutes of Neurological Disorders and Stroke in the US with Dr Jordan Grafman, chief of the Cognitive Neuroscience Section, and Dr Jorge Moll, now at the LABS-D'Or Center for Neuroscience in Rio de Janeiro, Brazil, used functional magnetic resonance imaging (fMRI) to scan the brains of 29 healthy individuals while they considered certain social behaviours.

The findings – published in the journal Cerebral Cortex – for the first time chart the regions of the brain that interact to link knowledge about socially appropriate behaviour with different moral feelings, depending on the context in which the social behaviour occurs.

“During everyday life we constantly evaluate social behaviour and this largely affects how we feel about ourselves and other people,” said Dr Zahn. “But the way we store and use information about our own and other people’s social behaviour are not well understood.

“This latest study used functional brain imaging to identify the circuits in the brain that underpin our ability to differentiate social behaviour that conforms to our values from behaviour that does not.”

The team observed that social behaviour not conforming to an individual’s values evoked feelings of anger when carried out by another person or feelings of guilt when the behaviour stemmed from the individuals themselves.

The fMRI scans of each volunteer could then be analysed to see which parts of the brain were activated for the different types of feeling being expressed. Of particular interest to Dr Zahn were the brain scans relating to feelings of guilt, as these have particular relevance to his current work on depression.

“The most distinctive feature of depressive disorders is an exaggerated negative attitude to oneself, which is typically accompanied by feelings of guilt,” he said.

“Now that we understand how the brains of healthy individuals respond to feelings of guilt, we hope to be able to better understand why and where there are differences in brain activity in people suffering from, or prone to, depression.

“The brain region we have identified to be associated with proneness to guilt has been shown to be abnormally active in patients with severe depression in several previous studies, but until now its involvement in guilt had been unknown."

“By translating these basic cognitive neuroscience insights into clinical research we now have the potential to discover new key functional anatomical characteristics of the brain that may lie behind depressive disorders.

“The results will hopefully make an important contribution to our understanding of the causes of depression that will ultimately allow new approaches to find better treatments and prevention.”

The current clinical study, being carried out with professors Matthew Lambon-Ralph, Bill Deakin and Alistair Burns at The University of Manchester, will last four years.

Aeron Haworth | alfa
Further information:
http://www.manchester.ac.uk

Further reports about: Depression depressive disorders fMRI fMRI scans

More articles from Studies and Analyses:

nachricht Study relating to materials testing Detecting damages in non-magnetic steel through magnetism
23.07.2018 | Technische Universität Kaiserslautern

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Im Focus: New interactive machine learning tool makes car designs more aerodynamic

Scientists develop first tool to use machine learning methods to compute flow around interactively designable 3D objects. Tool will be presented at this year’s prestigious SIGGRAPH conference.

When engineers or designers want to test the aerodynamic properties of the newly designed shape of a car, airplane, or other object, they would normally model...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Within reach of the Universe

08.08.2018 | Event News

A journey through the history of microscopy – new exhibition opens at the MDC

27.07.2018 | Event News

2018 Work Research Conference

25.07.2018 | Event News

 
Latest News

Quantum material is promising 'ion conductor' for research, new technologies

17.08.2018 | Materials Sciences

Low bandwidth? Use more colors at once

17.08.2018 | Information Technology

Protecting the power grid: Advanced plasma switch for more efficient transmission

17.08.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>