Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blind mice can 'see' thanks to special retinal cells

15.07.2010
It would make the perfect question for the popular television show "Are You Smarter than a 5th Grader:" What parts of the eye allow us to see?

The conventional wisdom: rods and cones. The human retina contains about 120 million rods, which detect light and darkness, shape and movement, and about 7 million cones, which in addition detect color. Without them, or so we are taught, our eyesight simply would not exist.

But that might not be true, according to a study -- published July 15 in the journal Neuron -- that provides new hope to people who have severe vision impairments or who are blind.

A team led by biologist Samer Hattar of The Johns Hopkins University's Krieger School of Arts and Sciences found that mice that didn't have any rods and cones function could still see -- and not just light, but also patterns and images -- courtesy of special photosensitive cells in the rodents' retinas. Until now, it was presumed that those cells, called intrinsically photosensitive Retinal Ganglion Cells, (or ipRGCs), didn't play a role in image formation, but instead served other functions, such as dictating when the animals went to sleep or woke up. (All mammals, including humans, have ipRGCs, as well as rods and cones.)

"Up until now, it was assumed that rods and cones were the only cells capable of detecting light to allow us to form images," said Hattar, who as an assistant professor in the Department of Biology, studies mammals' sleep-wake cycles, also called "circadian rhythms." "But our study shows that even mice which were blind could form low-acuity yet measurable images, using ipRGCs. The exciting thing is that, in theory at least, this means that a blind person could be trained to use his or her ipRGCs to perform simple tasks that require low visual acuity."

"Visual acuity" refers to the sharpness or clarity of a person's (or animal's) vision. Someone with so-called "20/20 vision" can see clearly at a distance of 20 feet what the "average" human being can see at that distance. In contrast, a person with "20/100" vision would have to stand 20 feet away from, for instance, an eye chart that the average person could read from 100 feet away. People with very low visual acuity (worse than "20/100" with corrective lenses) are considered "legally blind."

In addition to providing hope for people with serious vision problems, Hattar's findings hint that, in the past, mammals may have used their ipRGCs for sight/image formation, but during the course of evolution, that function was somehow taken over by rods and cones.

The study also concludes that, far from being homogenous, ipRGCs come in five different subtypes, with the possibility that each may have different light-detecting physiological functions.

To conduct the study, the team used a special system to genetically label cells and then "trace" them to the rodents' brains before subjecting the mice to a number of vision tests. In one, mice followed the movements of a rotating drum, a test that assessed the animals' ability to track moving objects. In another, the rodents were placed within a "Y"-shaped maze and challenged to escape by selecting the lever that would let them out. That lever was associated with a certain visual pattern. The mice that were blind -- they lacked rods, cones and ipRGCs -- couldn't find that lever. But those with only ipRGCs could.

"These studies are extremely exciting to me, because they show that even a simple light-detecting system like ipRGCs has incredible diversity and may support low-acuity vision, allowing us to peer into evolution to understand how simple vision may have originally evolved before the introduction of the fancy photoreceptors rods and cones," Hattar said.

Hattar's team worked on this study in collaboration with groups led by David Berson of Brown University and Glen Prusky of Weill Cornell Medical College. It was supported by grants from the National Institutes of Health, the David and Lucile Packard Foundation and the Alfred P. Sloan Foundation.

Related links:

http://www.bio.jhu.edu/Faculty/Hattar/Default.html
http://neuroscience.jhu.edu/SamerHattar.php

Lisa DeNike | EurekAlert!
Further information:
http://www.jhu.edu/

More articles from Studies and Analyses:

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Oxygen loss in the coastal Baltic Sea is “unprecedentedly severe”
05.07.2018 | European Geosciences Union

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

Barium ruthenate: A high-yield, easy-to-handle perovskite catalyst for the oxidation of sulfides

16.07.2018 | Life Sciences

New research calculates capacity of North American forests to sequester carbon

16.07.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>