Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The big male nose

19.11.2013
New study explains why men's noses are bigger than women's

Human noses come in all shapes and sizes. But one feature seems to hold true: Men’s noses are bigger than women’s.


Male noses grow disproportionately larger than female noses beginning at puberty, a University of Iowa study has found. The reason: Males need to breathe in more oxygen to feed muscle mass than females. Image courtesy of the College of Dentistry.

A new study from the University of Iowa concludes that men’s noses are about 10 percent larger than female noses, on average, in populations of European descent. The size difference, the researchers believe, comes from the sexes’ different builds and energy demands: Males in general have more lean muscle mass, which requires more oxygen for muscle tissue growth and maintenance. Larger noses mean more oxygen can be breathed in and transported in the blood to supply the muscle.

The researchers also note that males and females begin to show differences in nose size at around age 11, generally, when puberty starts. Physiologically speaking, males begin to grow more lean muscle mass from that time, while females grow more fat mass. Prior research has shown that, during puberty, approximately 95 percent of body weight gain in males comes from fat-free mass, compared to 85 percent in females.

“This relationship has been discussed in the literature, but this is the first study to examine how the size of the nose relates to body size in males and females in a longitudinal study,” says Nathan Holton, assistant professor in the UI College of Dentistry and lead author of the paper, published in the American Journal of Physical Anthropology. “We have shown that as body size increases in males and females during growth, males exhibit a disproportionate increase in nasal size. This follows the same pattern as energetic variables such as oxygenate consumption, basal metabolic rate and daily energy requirements during growth.”

It also explains why our noses are smaller than those of our ancestors, such as the Neanderthals. The reason, the researchers believe, is because our distant lineages had more muscle mass, and so needed larger noses to maintain that muscle. Modern humans have less lean muscle mass, meaning we can get away with smaller noses.

“So, in humans, the nose can become small, because our bodies have smaller oxygen requirements than we see in archaic humans,” Holton says, noting also that the rib cages and lungs are smaller in modern humans, reinforcing the idea that we don’t need as much oxygen to feed our frames as our ancestors. “This all tells us physiologically how modern humans have changed from their ancestors.”

Holton and his team tracked nose size and growth of 38 individuals of European descent enrolled in the Iowa Facial Growth Study from three years of age until the mid-twenties, taking external and internal measurements at regular intervals for each individual. The researchers found that boys and girls have the same nose size, generally speaking, from birth until puberty percolated, around age 11. From that point onward, the size difference grew more pronounced, the measurements showed.

“Even if the body size is the same,” Holton says, “males have larger noses, because more of the body is made up of that expensive tissue. And, it’s at puberty that these differences really take off.”

Holton says the findings should hold true for other populations, as differences in male and female physiology cut across cultures and races, although further studies would need to confirm that.

Prior research appears to support Holton’s findings. In a 1999 study published in the European Journal of Nutrition, researchers documented that males' energy needs doubles that of females post-puberty, “indicating a disproportional increase in energy expenditure in males during this developmental period,” Holton and his colleagues write.

Another interesting aspect of the research is what it all means for how we think of the nose. It’s not just a centrally located adornment on our face; it’s more a valuable extension of our lungs.

“So, in that sense, we can think of it as being independent of the skull, and more closely tied with non-cranial aspects of anatomy,” Holton says.

Thomas Southard, professor and chair of orthodontics in the UI College of Dentistry, is a contributing author on the paper. Other authors are Todd Yokley, from Metropolitan State University in Denver, and Andrew Froehle, from Wright State University, in Dayton, Ohio.

The Department of Orthodontics in the UI College of Dentistry funded the research.

Contacts
Nathan Holton, College of Dentistry, 319- 384-4786
Richard Lewis, University Communication and Marketing, 319-384-0012

Richard Lewis | EurekAlert!
Further information:
http://www.uiowa.edu

Further reports about: Human noses body size fat-free mass muscle mass muscle tissue

More articles from Studies and Analyses:

nachricht Innovative genetic tests for children with developmental disorders and epilepsy
11.07.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Oxygen loss in the coastal Baltic Sea is “unprecedentedly severe”
05.07.2018 | European Geosciences Union

All articles from Studies and Analyses >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Im Focus: Magnetic vortices: Two independent magnetic skyrmion phases discovered in a single material

For the first time a team of researchers have discovered two different phases of magnetic skyrmions in a single material. Physicists of the Technical Universities of Munich and Dresden and the University of Cologne can now better study and understand the properties of these magnetic structures, which are important for both basic research and applications.

Whirlpools are an everyday experience in a bath tub: When the water is drained a circular vortex is formed. Typically, such whirls are rather stable. Similar...

Im Focus: Breaking the bond: To take part or not?

Physicists working with Roland Wester at the University of Innsbruck have investigated if and how chemical reactions can be influenced by targeted vibrational excitation of the reactants. They were able to demonstrate that excitation with a laser beam does not affect the efficiency of a chemical exchange reaction and that the excited molecular group acts only as a spectator in the reaction.

A frequently used reaction in organic chemistry is nucleophilic substitution. It plays, for example, an important role in in the synthesis of new chemical...

Im Focus: New 2D Spectroscopy Methods

Optical spectroscopy allows investigating the energy structure and dynamic properties of complex quantum systems. Researchers from the University of Würzburg present two new approaches of coherent two-dimensional spectroscopy.

"Put an excitation into the system and observe how it evolves." According to physicist Professor Tobias Brixner, this is the credo of optical spectroscopy....

Im Focus: Chemical reactions in the light of ultrashort X-ray pulses from free-electron lasers

Ultra-short, high-intensity X-ray flashes open the door to the foundations of chemical reactions. Free-electron lasers generate these kinds of pulses, but there is a catch: the pulses vary in duration and energy. An international research team has now presented a solution: Using a ring of 16 detectors and a circularly polarized laser beam, they can determine both factors with attosecond accuracy.

Free-electron lasers (FELs) generate extremely short and intense X-ray flashes. Researchers can use these flashes to resolve structures with diameters on the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Leading experts in Diabetes, Metabolism and Biomedical Engineering discuss Precision Medicine

13.07.2018 | Event News

Conference on Laser Polishing – LaP: Fine Tuning for Surfaces

12.07.2018 | Event News

11th European Wood-based Panel Symposium 2018: Meeting point for the wood-based materials industry

03.07.2018 | Event News

 
Latest News

Behavior-influencing policies are critical for mass market success of low carbon vehicles

17.07.2018 | Power and Electrical Engineering

Plant mothers talk to their embryos via the hormone auxin

17.07.2018 | Life Sciences

Subaru Telescope helps pinpoint origin of ultra-high energy neutrino

16.07.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>